14 resultados para Âge-Période-Cohorte

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics.PACS: 81.07.Ta; 78.67.Hc; 68.65.-k.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taper-free and vertically oriented Ge nanowires were grown on Si (111) substrates by chemical vapor deposition with Au nanoparticle catalysts. To achieve vertical nanowire growth on the highly lattice mismatched Si substrate, a thin Ge buffer layer was first deposited, and to achieve taper-free nanowire growth, a two-temperature process was employed. The two-temperature process consisted of a brief initial base growth step at high temperature followed by prolonged growth at lower temperature. Taper-free and defect-free Ge nanowires grew successfully even at 270 °C, which is 90 °C lower than the bulk eutectic temperature. The yield of vertical and taper-free nanowires is over 90%, comparable to that of vertical but tapered nanowires grown by the conventional one-temperature process. This method is of practical importance and can be reliably used to develop novel nanowire-based devices on relatively cheap Si substrates. Additionally, we observed that the activation energy of Ge nanowire growth by the two-temperature process is dependent on Au nanoparticle size. The low activation energy (∼5 kcal/mol) for 30 and 50 nm diameter Au nanoparticles suggests that the decomposition of gaseous species on the catalytic Au surface is a rate-limiting step. A higher activation energy (∼14 kcal/mol) was determined for 100 nm diameter Au nanoparticles which suggests that larger Au nanoparticles are partially solidified and that growth kinetics become the rate-limiting step. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of epitaxial Ge nanowires is investigated on (100), (111) B and (110) GaAs substrates in the growth temperature range from 300 to 380 °C. Unlike epitaxial Ge nanowires on Ge or Si substrates, Ge nanowires on GaAs substrates grow predominantly along the [Formula: see text] direction. Using this unique property, vertical [Formula: see text] Ge nanowires epitaxially grown on GaAs(110) surface are realized. In addition, these Ge nanowires exhibit minimal tapering and uniform diameters, regardless of growth temperatures, which is an advantageous property for device applications. Ge nanowires growing along the [Formula: see text] directions are particularly attractive candidates for forming nanobridge devices on conventional (100) surfaces.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant improvements in the spatial and temporal uniformities of device switching parameters are successfully demonstrated in Ge/TaOx bilayer-based resistive switching devices, as compared with non-Ge devices. In addition, the reported Ge/TaOx devices also show significant reductions in the operation voltages. Influence of the Ge layer on the resistive switching of TaOx-based resistive random access memory is investigated by X-ray spectroscopy and the theory of Gibbs free energy. Higher uniformity is attributed to the confinement of the filamentary switching process. The presence of a larger number of interface traps, which will create a beneficial electric field to facilitate the drift of oxygen vacancies, is believed to be responsible for the lower operation voltages in the Ge/TaO x devices. © 1980-2012 IEEE.