132 resultados para trust evolution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we demonstrate that the structural and optical properties of Si nanoclusters (Si ncs) formed by thermal annealing of SiOx films prepared by plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering are very different. In fact, at a fixed Si excess and annealing temperature, photoluminescence (PL) spectra of sputtered samples are redshifted with respect to PECVD samples, denoting a larger Si ncs size. In addition, PL intensity reaches a maximum in sputtered films at annealing temperatures much lower than those needed in PECVD films. These data are correlated with structural properties obtained by energy filtered transmission electron microscopy and electron energy loss spectroscopy. It is shown that in PECVD films only around 30% of the Si excess agglomerates in clusters while an almost complete agglomeration occurs in sputtered films. These data are explained on the basis of the different initial structural properties of the as-deposited films that become crucial for the subsequent evolution. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stoichiometric Er silicate thin films, monosilicate (Er2SiO 5) and disilicate (Er2Si2O7), have been grown on c-Si substrates by rf magnetron sputtering. The influence of annealing temperature in the range 1000-1200 °C in oxidizing ambient (O 2) on the structural and optical properties has been studied. In spite of the known reactivity of rare earth silicates towards silicon, Rutherford backscattering spectrometry shows that undesired chemical reactions between the film and the substrate can be strongly limited by using rapid thermal treatments. Monosilicate and disilicate films crystallize at 1100 and 1200 °C, respectively, as shown by x-ray diffraction analysis; the crystalline structures have been identified in both cases. Moreover, photoluminescence (PL) measurements have demonstrated that the highest PL intensity is obtained for Er2Si2O7 film annealed at 1200 °C. In fact, this treatment allows us to reduce the defect density in the film, in particular by saturating oxygen vacancies, as also confirmed by the increase of the lifetime of the PL signal. © 2008 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent theoretical frameworks such as optimal feedback control suggest that feedback gains should modulate throughout a movement and be tuned to task demands. Here we measured the visuomotor feedback gain throughout the course of movements made to "near" or "far" targets in human subjects. The visuomotor gain showed a systematic modulation over the time course of the reach, with the gain peaking at the middle of the movement and dropping rapidly as the target is approached. This modulation depends primarily on the proportion of the movement remaining, rather than hand position, suggesting that the modulation is sensitive to task demands. Model-predictive control suggests that the gains should be continuously recomputed throughout a movement. To test this, we investigated whether feedback gains update when the task goal is altered during a movement, that is when the target of the reach jumped. We measured the visuomotor gain either simultaneously with the jump or 100 ms after the jump. The visuomotor gain nonspecifically reduced for all target jumps when measured synchronously with the jump. However, the visuomotor gain 100 ms later showed an appropriate modulation for the revised task goal by increasing for jumps that increased the distance to the target and reducing for jumps that decreased the distance. We conclude that visuomotor feedback gain shows a temporal evolution related to task demands and that this evolution can be flexibly recomputed within 100 ms to accommodate online modifications to task goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs was radially deposited on InAs nanowires by metal-organic chemical vapor deposition and resultant nanowire heterostructures were characterized by detailed electron microscopy investigations. The GaAs shells have been grown in wurtzite structure, epitaxially on the wurtzite structured InAs nanowire cores. The fundamental reason of structural evolution in terms of material nucleation and interfacial structure is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Branched nanowire heterostructures of InAsGaAs were observed during Au-assisted growth of InAs on GaAs nanowires. The evolution of these branches has been determined through detailed electron microscopy characterization with the following sequence: (1) in the initial stage of InAs growth, the Au droplet is observed to slide down the side of the GaAs nanowire, (2) the downward movement of Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and (3) with further supply of In and As vapor reactants, the Au nanoparticles assist the formation of InAs branches with a well-defined orientation relationship with GaAsInAs core/shell stems. We anticipate that these observations advance the understanding of the kink formation in axial nanowire heterostructures. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the healthcare sector has adopted the use of operational risk assessment tools to help understand the systems issues that lead to patient safety incidents. But although these problem-focused tools have improved the ability of healthcare organizations to identify hazards, they have not translated into measurable improvements in patient safety. One possible reason for this is a lack of support for the solution-focused process of risk control. This article describes a content analysis of the risk management strategies, policies, and procedures at all acute (i.e., hospital), mental health, and ambulance trusts (health service organizations) in the East of England area of the British National Health Service. The primary goal was to determine what organizational-level guidance exists to support risk control practice. A secondary goal was to examine the risk evaluation guidance provided by these trusts. With regard to risk control, we found an almost complete lack of useful guidance to promote good practice. With regard to risk evaluation, the trusts relied exclusively on risk matrices. A number of weaknesses were found in the use of this tool, especially related to the guidance for scoring an event's likelihood. We make a number of recommendations to address these concerns. The guidance assessed provides insufficient support for risk control and risk evaluation. This may present a significant barrier to the success of risk management approaches in improving patient safety. © 2013 Society for Risk Analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localized regions of turbulence, or turbulent clouds, in a stratified fluid are the subject of this study, which focuses on the edge dynamics occurring between the turbulence and the surrounding quiescent region. Through laboratory experiments and numerical simulations of stratified turbulent clouds, we confirm that the edge dynamics can be subdivided into materially driven intrusions and horizontally travelling internal wave-packets. Three-dimensional visualizations show that the internal gravity wave-packets are in fact large-scale pancake structures that grow out of the turbulent cloud into the adjacent quiescent region. The wave-packets were tracked in time, and it is found that their speed obeys the group speed relation for linear internal gravity waves. The energetics of the propagating waves, which include waveforms that are inclined with respect to the horizontal, are also considered and it is found that, after a period of two eddy turnover times, the internal gravity waves carry up to 16 % of the cloud kinetic energy into the initially quiescent region. Turbulent events in nature are often in the form of decaying turbulent clouds, and it is therefore suggested that internal gravity waves radiated from an initial cloud could play a significant role in the reorganization of energy and momentum in the atmosphere and oceans.©2013 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The achievement of the desirable morphology at the nanometer scale of bulk heterojunctions consisting of a conjugated polymer with fullerene derivatives is a prerequisite in order to optimize the power conversion efficiency of organic solar cells. The various experimental conditions such as the choice of solvent, drying rates and annealing have been found to significantly affect the blend morphology and the final performance of the photovoltaic device. In this work, we focus on the effects of post deposition thermal annealing at 140 °C on the blend morphology, the optical and structural properties of bulk heterojunctions that consist of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM). The post thermal annealing modifies the distribution of the P3HT and the PCBM inside the blend films, as it has been found by Spectroscopic Ellipsometry studies in the visible to far-ultraviolet spectral range. Phase separation was identified by AFM and GIXRD as a result of a slow drying process which took place after the spin coating process. The increase of the annealing time resulted to a significant increase of the P3HT crystallinity at the top regions of the blend films. © 2011 Elsevier B.V. All rights reserved.