131 resultados para shape descriptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical and irreversible temperature sensor (e.g., a time-temperature integrator) is reported based on a mechanically embossed chiral-nematic polymer network. The polymer consists of a chemical and a physical (hydrogen-bonded) network and has a reflection band in the visible wavelength range. The sensors are produced by mechanical embossing at elevated temperatures. A relative large compressive deformation (up to 10%) is obtained inducing a shift to shorter wavelength of the reflection band (>30 nm). After embossing, a temperature sensor is obtained that exhibits an irreversible optical response. A permanent color shift to longer wavelengths (red) is observed upon heating of the polymer material to temperatures above the glass transition temperature. It is illustrated that the observed permanent color shift is related to shape memory in the polymer material. The films can be printed on a foil, thus showing that these sensors are potentially interesting as time-temperature integrators for applications in food and pharmaceutical products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creasing in thin shells admits large deformation by concentrating curvatures while relieving stretching strains over the bulk of the shell: after unloading, the creases remain as narrow ridges and the rest of the shell is flat or simply curved. We present a helically creased unloaded shell that is doubly curved everywhere, which is formed by cylindrically wrapping a flat sheet with embedded foldlines not axially aligned. The finished shell is in a state of uniform self-stress and this is responsible for maintaining the Gaussian curvature outside of the creases in a controllable and persistent manner. We describe the overall shape of the shell using the familiar geometrical concept of a Mohr's circle applied to each of its constituent features-the creases, the regions between the creases, and the overall cylindrical form. These Mohr's circles can be combined in view of geometrical compatibility, which enables the observed shape to be accurately and completely described in terms of the helical pitch angle alone. Copyright © 2013 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the performance of different variants of a suitably tailored Tabu Search optimisation algorithm on a higher-order design problem. We consider four objective func- tions to describe the performance of a compressor stator row, subject to a number of equality and inequality constraints. The same design problem has been previously in- vestigated through single-, bi- and three-objective optimisation studies. However, in this study we explore the capabilities of enhanced variants of our Multi-objective Tabu Search (MOTS) optimisation algorithm in the context of detailed 3D aerodynamic shape design. It is shown that with these enhancements to the local search of the MOTS algorithm we can achieve a rapid exploration of complicated design spaces, but there is a trade-off be- tween speed and the quality of the trade-off surface found. Rapidly explored design spaces reveal the extremes of the objective functions, but the compromise optimum areas are not very well explored. However, there are ways to adapt the behaviour of the optimiser and maintain both a very efficient rate of progress towards the global optimum Pareto front and a healthy number of design configurations lying on the trade-off surface and exploring the compromise optimum regions. These compromise solutions almost always represent the best qualitative balance between the objectives under consideration. Such enhancements to the effectiveness of design space exploration make engineering design optimisation with multiple objectives and robustness criteria ever more practicable and attractive for modern advanced engineering design. Finally, new research questions are addressed that highlight the trade-offs between intelligence in optimisation algorithms and acquisition of qualita- tive information through computational engineering design processes that reveal patterns and relations between design parameters and objective functions, but also speed versus optimum quality. © 2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load De ation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the fl apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and eficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same flapwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 by Nordex Energy GmbH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load Deation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and efficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same apwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Multi Scale Shape Index (MSSI), a novel feature for 3D object recognition. Inspired by the scale space filtering theory and Shape Index measure proposed by Koenderink & Van Doorn [6], this feature associates different forms of shape, such as umbilics, saddle regions, parabolic regions to a real valued index. This association is useful for representing an object based on its constituent shape forms. We derive closed form scale space equations which computes a characteristic scale at each 3D point in a point cloud without an explicit mesh structure. This characteristic scale is then used to estimate the Shape Index. We quantitatively evaluate the robustness and repeatability of the MSSI feature for varying object scales and changing point cloud density. We also quantify the performance of MSSI for object category recognition on a publicly available dataset. © 2013 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the basic problem of recovering the 3D surface of an object that is observed in motion by a single camera and under a static but unknown lighting condition. We propose a method to establish pixelwise correspondence between input images by way of depth search by investigating optimal subsets of intensities rather than employing all the relevant pixel values. The thrust of our algorithm is that it is capable of dealing with specularities which appear on the top of shading variance that is caused due to object motion. This is in terms of both stages of finding sparse point correspondence and dense depth search. We also propose that a linearised image basis can be directly computed by the procudure of finding the correspondence. We illustrate the performance of the theoretical propositions using images of real objects. © 2009. The copyright of this document resides with its authors.