155 resultados para near-rectangular slot
Resumo:
We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of multi-walled carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. In particular, we examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates.
2D PIV measurements in the near field of grid turbulence using stitched fields from multiple cameras
Resumo:
We present measurements of grid turbulence using 2D particle image velocimetry taken immediately downstream from the grid at a Reynolds number of Re M = 16500 where M is the rod spacing. A long field of view of 14M x 4M in the down- and cross-stream directions was achieved by stitching multiple cameras together. Two uniform biplanar grids were selected to have the same M and pressure drop but different rod diameter D and crosssection. A large data set (10 4 vector fields) was obtained to ensure good convergence of second-order statistics. Estimations of the dissipation rate ε of turbulent kinetic energy (TKE) were found to be sensitive to the number of meansquared velocity gradient terms included and not whether the turbulence was assumed to adhere to isotropy or axisymmetry. The resolution dependency of different turbulence statistics was assessed with a procedure that does not rely on the dissipation scale η. The streamwise evolution of the TKE components and ε was found to collapse across grids when the rod diameter was included in the normalisation. We argue that this should be the case between all regular grids when the other relevant dimensionless quantities are matched and the flow has become homogeneous across the stream. Two-point space correlation functions at x/M = 1 show evidence of complex wake interactions which exhibit a strong Reynolds number dependence. However, these changes in initial conditions disappear indicating rapid cross-stream homogenisation. On the other hand, isotropy was, as expected, not found to be established by x/M = 12 for any case studied. © Springer-Verlag 2012.
Resumo:
The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ±0.4, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ2 /3 law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions. © 2012 American Physical Society.
Resumo:
Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.
Resumo:
We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum. © 2012 American Institute of Physics.
Resumo:
The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ± 0.4°, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ(2/3) law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions.
Resumo:
Experiments are conducted to examine the mechanisms behind the coupling between corner separation and separation away from the corner when holding a high-Machnumber M∞ = 1.5 normal shock in a rectangular channel. The ensuing shock wave interaction with the boundary layer on the wind tunnel floor and in the corners was studied using laser Doppler anemometry, Pitot probe traverses, pressure sensitive paint and flow visualization. The primary mechanism explaining the link between the corner separation size and the other areas of separation appears to be the generation of compression waves at the corner, which act to smear the adverse pressure gradient imposed upon other parts of the flow. Experimental results indicate that the alteration of the -region, which occurs in the supersonic portion of the shock wave/boundary layer interaction (SBLI), is more important than the generation of any blockage in the subsonic region downstream of the shock wave. © Copyright 2012 Cambridge University Press.
Resumo:
In this paper we study parameter estimation for time series with asymmetric α-stable innovations. The proposed methods use a Poisson sum series representation (PSSR) for the asymmetric α-stable noise to express the process in a conditionally Gaussian framework. That allows us to implement Bayesian parameter estimation using Markov chain Monte Carlo (MCMC) methods. We further enhance the series representation by introducing a novel approximation of the series residual terms in which we are able to characterise the mean and variance of the approximation. Simulations illustrate the proposed framework applied to linear time series, estimating the model parameter values and model order P for an autoregressive (AR(P)) model driven by asymmetric α-stable innovations. © 2012 IEEE.
Resumo:
We demonstrate metamaterials operating in the near-visible regime based on two-dimensional arrays of gold-coated silicon nanopillars. The nanopillar arrays demonstrate a cutoff response at the metamaterial plasma frequency in accordance with theory and can be utilized for filtering applications. A plasma frequency in the near visible region of λ = 1 μm is calculated numerically for an array with a lattice constant of 300 nm and wire radius of 50 nm, with reflection measurements in agreement with numerical calculations. Such structures can be utilized for achieving negative-index based metamaterials for the visible spectrum.
Resumo:
While searching for objects, we combine information from multiple visual modalities. Classical theories of visual search assume that features are processed independently prior to an integration stage. Based on this, one would predict that features that are equally discriminable in single feature search should remain so in conjunction search. We test this hypothesis by examining whether search accuracy in feature search predicts accuracy in conjunction search. Subjects searched for objects combining color and orientation or size; eye movements were recorded. Prior to the main experiment, we matched feature discriminability, making sure that in feature search, 70% of saccades were likely to go to the correct target stimulus. In contrast to this symmetric single feature discrimination performance, the conjunction search task showed an asymmetry in feature discrimination performance: In conjunction search, a similar percentage of saccades went to the correct color as in feature search but much less often to correct orientation or size. Therefore, accuracy in feature search is a good predictor of accuracy in conjunction search for color but not for size and orientation. We propose two explanations for the presence of such asymmetries in conjunction search: the use of conjunctively tuned channels and differential crowding effects for different features.
Resumo:
The computation of both transient and steady turbulent incompressible isothermal flows is studied. The flow is very complex, having streamline curvature, large vortex structures and stagnation resulting from an impinging rectangular jet. For transient computations, the standard k-ε model is adopted. For steady flows, the k-ε, high and low Reynolds number k-l and mixing length models are tried. Zonal approaches combining the above turbulence models are also investigated. None of the models are found to give satisfactory agreement with velocity measurements.