126 resultados para nano ZnO
Resumo:
Ultra-smooth nanocrystalline diamond (UNCD) films with high-acoustic wave velocity were introduced into ZnO-based surface acoustic wave (SAW) devices to enhance their microfluidic efficiency by reducing the acoustic energy dissipation into the silicon substrate and improving the acoustic properties of the SAW devices. Microfluidic efficiency of the ZnO-based SAW devices with and without UNCD inter layers was investigated and compared. Results showed that the pumping velocities increase with the input power and those of the ZnO/UNCD/Si devices are much larger than those of the ZnO/Si devices at the same power. The jetting efficiency of the droplet was improved by introducing the UNCD interlayer into the ZnO/Si SAW device. Improvement in the microfluidic efficiency is mainly attributed to the diamond layer, which restrains the acoustic wave to propagate in the top layer rather than dissipating into the substrate. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.
Resumo:
Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.
Resumo:
This paper reports a high-resolution frequency-output MEMS tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. A combination of design enhancements enables significantly higher sensitivity for this device as compared to previously reported prototype sensors. The MEMS tilt sensor is calibrated on a manual tilt table over tilt angles ranging over 0-90 degrees with a relatively linear response measured in the range of ±20°(linearity error <2.3%) with a scale factor of approximately 50.06 Hz/degree. The noise-limited resolution of the sensor is found to be approximately 250 nano-radians for an integration time of 0.8 s, which is over an order of magnitude better than previously reported results [1]. © 2013 IEEE.
Resumo:
A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ∼16.5 V, a high drain current on/off ratio of ∼105, a gate leakage current below ∼300 pA, and excellent retention characteristics for over 104 s. © 2014 AIP Publishing LLC.
Resumo:
This paper describes the novel nanocrystalline film ZnO surface acoustic wave devices, which demonstrate their great potential for the portable disease diagnostic system with integrated functions of microfluidic transport, mixing and biosensing. The devices can be easily integrated with electronic control circuitry and fabricated with low temperature process on Si, glass or even polymer substrates. The liquid convection and internal streaming patterns was easily induced by acoustic wave at signal voltages. With further increase in applied voltage to above 20V, the liquid droplet was pushed forward. Immunoreaction-based bio-detection PSA/ACT, all based on SAW devices on thin film piezoelectric ZnO on Si substrate was demonstrated. © 2009 CBMS.