200 resultados para micro actuators
Resumo:
Previously published expressions for the wear volume in the micro-scale abrasion test for curved specimen surfaces (K.L. Rutherford and I.M. Hutchings, Tribology Letters 2 (1996) 1-11) were based upon erroneous assumptions about the wear-scar geometry. Accurate volumes have now been computed, and the errors in the use of the original analytical equations are shown to be negligibly small (<0.5% error) for all practical cases. © J.C. Baltzer AG, Science Publishers.
Resumo:
This paper presents a series of centrifuge tests carried out to investigate the performance of non-structural inclined micro-piles as a potential liquefaction remediation method for existing buildings. Both a single-degree-of-freedom frame structure and a two-storey, two-degree-of-freedom frame structure were used as model buildings in these tests. Centrifuge tests were carried out with and without micro-piles in the foundation soil for each structure. Results primarily from the tests with the SDOF structure are presented in this paper. It is found that the micro-piles have some beneficial effect by increasing shear strains in the soil in their vicinity and hence causing dilation in these zones. However, they also increase structural accelerations by transmitting accelerations from deep in the soil and the beneficial effects from increased dilation are outweighed by the detrimental migration of pore pressures.
Resumo:
A ball-on-flat reciprocating micro-tribometer has been used to measure the friction coefficient between aluminium alloy strip and a steel ball. A relatively small ball and correspondingly low contact load is used to give a contact width of the order of 100μm, closer to asperity contact widths than generally found for this type of test. The effects of load, initial strip surface roughness, lubricants and boundary additives are investigated. It is found that the friction coefficient is significantly reduced by the addition of a lubricant. Observations of the wear tracks and ball surface show that the material transfer from aluminium to the ball is reduced in the presence of the lubricant. The initial friction coefficient is further reduced by the addition of a boundary additive, but the friction coefficient after 8 cycles is unchanged. Copyright © 2004 by Springer Science+Business Media, Inc.
Resumo:
This paper presents research into superconducting Micro-Bearings for MEMS systems. Advanced silicon processing techniques developed for the Very Large Scale Integration (VLSI) industry have been exploited in recent years to enable the production of micro-engineered moving mechanical systems. These devices commonly known as Micro-ElectroMechanical Systems (MEMS) have many potential advantages. In many respects the effect of scaling a machine from macro-sized to micro-sized are either neutral or beneficial. However in one important respect the scaling produces a severely detrimental effect. That respect is in the tribology and the subsequent wear on the high speed rotating machines. This leads to very short device lifetimes. This paper presents results obtained from a MEMS motor supported on superconducting bearings. The bearings are self-positioning, relying on, the Meissner effect to provide a levitation force which moves the rotor into position and flux pinning to provide stability thereafter. The rotor is driven by a simple electrostatic type motor in which photo resist is used to pattern the motor poles directly onto the rotor. © 2005 IEEE.