146 resultados para lanthanum strontium-doped manganite
Resumo:
In this study, TiN/La 2O 3/HfSiON/SiO 2/Si gate stacks with thick high-k (HK) and thick pedestal oxide were used. Samples were annealed at different temperatures and times in order to characterize in detail the interaction mechanisms between La and the gate stack layers. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements performed on these samples show a time diffusion saturation of La in the high-k insulator, indicating an La front immobilization due to LaSiO formation at the high-k/interfacial layer. Based on the SIMS data, a technology computer aided design (TCAD) diffusion model including La time diffusion saturation effect was developed. © 2012 American Institute of Physics.
Resumo:
We investigate the electrical properties of silicon-on-insulator (SOI) photonic crystals as a function of both doping level and air filling factor. The resistance trends can be clearly explained by the presence of a depletion region around the sidewalls of the holes that is caused by band pinning at the surface. To understand the trade-off between the carrier transport and the optical losses due to free electrons in the doped SOI, we also measured the resonant modes of L3 photonic crystal nanocavities and found that surprisingly high doping levels, up to 1018 / cm3, are acceptable for practical devices with Q factors as high as 4× 104. © 2011 American Institute of Physics.
Resumo:
We investigated the properties of light emitting devices whose active layer consists of Er-doped Si nanoclusters (nc) generated by thermal annealing of Er-doped SiOx layers prepared by magnetron cosputtering. Differently from a widely used technique such as plasma enhanced chemical vapor deposition, sputtering allows to synthesize Er-doped Si nc embedded in an almost stoichiometric oxide matrix, so as to deeply influence the electroluminescence properties of the devices. Relevant results include the need for an unexpected low Si excess for optimizing the device efficiency and, above all, the strong reduction of the influence of Auger de-excitation, which represents the main nonradiative path which limits the performances of such devices and their application in silicon nanophotonics. © 2010 American Institute of Physics.
Resumo:
We have investigated the role of the Si excess on the photoluminescence properties of Er doped substoichiometric SiOx layers. We demonstrate that the Si excess has two competing roles: when agglomerated to form Si nanoclusters (Si-nc) it enhances the Er excitation efficiency but it also introduces new non-radiative decay channels. When Er is excited through an energy transfer from Si-nc, the beneficial effect on the enhanced excitation efficiency prevails and the Er emission increases with increasing Si content. Nevertheless the maximum excited Er fraction is only of the order of percent. In order to increase the concentration of excited Er ions, a different approach based on Er silicate thin film has been explored. Under proper annealing conditions, an efficient luminescence at 1535 nm is found and all of the Er ions in the material is optically active. The possibility to efficiently excite Er ions also through electron-hole mediated processes is demonstrated in nanometer-scale Er-Si-O/Si multilayers. These data are presented and discussed.
Resumo:
We report the results of electrical resistivity measurements carried out on well-sintered La0.7Ca0.3MnO3 / Mn3O4 composite samples with almost constant composition of the magnetoresistive manganite phase (La0.7Ca0.3MnO3). A percolation threshold (fc) occurs when the La0.7Ca0.3MnO3 volume fraction is ~ 0.19. The dependence of the electrical resistivity as a function of La0.7Ca0.3MnO3 volume fraction (fLCMO) can be described by percolation-like phenomenological equations. Fitting the conducting regime (fLCMO > fc) by the percolation power law returns a critical exponent t value of 2.0 +/- 0.2 at room temperature and 2.6 +/-0.2 at 5 K. The increase of t is ascribed to the influence of the grain boundaries on the electrical conduction process at low temperature.
Resumo:
$La_{0.7}Ca_{0.3}MnO_3$ samples were prepared in nano- and polycrystalline forms by sol-gel and solid state reaction methods, respectively, and structurally characterized by synchrotron X-ray diffraction. The magnetic properties determined by ac susceptibility and dc magnetization measurements are discussed. The magnetocaloric effect in this nanocrystalline manganite is spread over a broader temperature interval than in the polycrystalline case. The relative cooling power of the poly- and nanocrystalline manganites is used to evaluate a possible application for magnetic cooling below room temperature.
Resumo:
The polycrystalline manganite La0.75Sr0.25MnO 3 prepared by an alternative carbonate precipitation route reveals the rhombohedral perovskite structure. Magnetization isotherms measured up to 2 T are used to determine Curie temperature of 332 K by means of Arrott plot. Maximum of magnetic entropy change is found at Curie temperature. The relative cooling power equal to 64 J/kg for 1.5 T magnetic field, is superior as compared to the manganite with the same chemical composition from the solgel method. © 2010 Elsevier B.V. All rights reserved.
Resumo:
The structural, magnetic and electrical transport properties of the Sn-doped TbMnO3 manganites are studied by X-ray diffraction, ac susceptibility, dc magnetization and electrical resistivity measurements. The Sn doping into the Tb and Mn sites of TbMnO3 compresses the unit cell and changes parameters of the antiferromagnetic phase whereas the magnetic moment of Mn are only weakly affected. The electrical resistivity of doped manganites is reduced and the activation energy EA is determined for the thermally activated conduction. © 2007 Elsevier B.V. All rights reserved.
Resumo:
La0.7Ca0.3MnO3 samples were prepared in nano- and polycrystalline forms by the sol-gel and solid state reaction methods, respectively, and structurally characterized by synchrotron X-ray diffraction. The magnetic properties determined by ac susceptibility and dc magnetization measurements are discussed. The magnetocaloric effect in this nanocrystalline manganite is spread over a broader temperature interval than in the polycrystalline case. The relative cooling power of the poly- and nanocrystalline manganites is used to evaluate a possible application for magnetic cooling below room temperature. © 2007 Springer-Verlag.
Resumo:
In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The magneto-transport properties of Bi1.5Pb0.4Nb0.1Sr2Ca2Cu 3O10-x polycrystalline, superconducting ceramic are reported. The material was found to be chemically homogeneous and partially textured. The mixed state properties were investigated by measuring the electrical resistivity, longitudinal and transverse (Nernst effect) thermoelectric power, and thermal conductivity. The magnetization and AC susceptibility measurements were also performed. The variation of these characteristics for magnetic fields up to 5 T are discussed and compared to those of the zero field case. The transport entropy and thermal Hall angle are extracted and quantitatively compared to previously reported data of closely related systems. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Passive modelocking using carbon nanotubes is achieved in a linear cavity waveguide laser realized by ultrafast laser inscription in ytterbium doped bismuthate glass. The pulses observed under a Q-switched envelope have a repetition rate of 1.5 GHz. © 2012 OSA.