148 resultados para knowledge mobilization
Resumo:
A large database of 115 triaxial, direct simple shear, and cyclic tests on 19 clays and silts is presented and analysed to develop an empirical framework for the prediction of the mobilization of the undrained shear strength, cu, of natural clays tested from an initially isotropic state of stress. The strain at half the peak undrained strength (γM=2) is used to normalize the shear strain data between mobilized strengths of 0.2cu and 0.8cu. A power law with an exponent of 0.6 is found to describe all the normalized data within a strain factor of 1.75 when a representative sample provides a value for γM=2. Multi-linear regression analysis shows that γM=2 is a function of cu, plasticity index Ip, and initial mean effective stress p′0. Of the 97 stress-strain curves for which cu, Ip, and p′0 were available, the observed values of γM=2 fell within a factor of three of the regression; this additional uncertainty should be acknowledged if a designer wished to limit immediate foundation settlements on the basis of an undrained strength profile and the plasticity index of the clay. The influence of stress history is also discussed. The application of these stress-strain relations to serviceability design calculations is portrayed through a worked example. The implications for geotechnical decision-making and codes of practice are considered.
Resumo:
Chapter 15 Design Advisor: How to Supply Designers with Knowledge about Inclusion? E. Zitkus, PM Langdon and PJ Clarkson 15.1 Introduction In an ideal scenario accessibility issues such as legibility, usability and associated cognitive ...
Resumo:
Design knowledge can be acquired from various sources and generally requires an integrated representation for its effective and efficient re-use. Though knowledge about products and processes can illustrate the solutions created (know-what) and the courses of actions (know-how) involved in their creation, the reasoning process (know-why) underlying the solutions and actions is still needed for an integrated representation of design knowledge. Design rationale is an effective way of capturing that missing part, since it records the issues addressed, the options considered, and the arguments used when specific design solutions are created and evaluated. Apart from the need for an integrated representation, effective retrieval methods are also of great importance for the re-use of design knowledge, as the knowledge involved in designing complex products can be huge. Developing methods for the retrieval of design rationale is very useful as part of the effective management of design knowledge, for the following reasons. Firstly, design engineers tend to want to consider issues and solutions before looking at solid models or process specifications in detail. Secondly, design rationale is mainly described using text, which often embodies much relevant design knowledge. Last but not least, design rationale is generally captured by identifying elements and their dependencies, i.e. in a structured way which opens the opportunity for going beyond simple keyword-based searching. In this paper, the management of design rationale for the re-use of design knowledge is presented. The retrieval of design rationale records in particular is discussed in detail. As evidenced in the development and evaluation, the methods proposed are useful for the re-use of design knowledge and can be generalised to be used for the retrieval of other kinds of structured design knowledge. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the world's largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.
Resumo:
Design rationale is an effective way of capturing knowledge, since it records the issues addressed, the options considered, and the arguments used when specific decisions are made during the design process. Design rationale is generally captured by identifying elements and their dependencies, i.e. in a structured way. Current retrieval methods focus mainly on either the classification of rationale or on keyword-based searches of records. Keyword-based retrieval is reasonably effective as the information in design rationale records is mainly described using text. However, most of the current keyword-based retrieval methods discard the implicit structures of these records, resulting either in poor precision of retrieval or in isolated pieces of information that are difficult to understand. This ongoing research aims to go beyond keyword-based retrieval by developing methods and tools to facilitate the provision of useful design knowledge in new design projects. Our first step is to understand the structured information derived from the relationship between lumps of text held in different nodes in the design rationale captured via a software tool currently used in industry, and study how this information can be utilised to improve retrieval performance. Specifically, methods for utilising various structured information are developed and implemented on a prototype keyword-based retrieval system developed in our earlier work. The implementation and evaluation of these methods shows that the structured information can be utilised in a number of ways, such as filtering the results and providing more complete information. This allows the retrieval system to present results that are easy to understand, and which closely match designers' queries. Like design rationale, other methods for representing design knowledge also in essence involve structured information and thus the methods proposed can be generalised to be adapted and applied for the retrieval of other kinds of design knowledge. Copyright © 2002-2012 The Design Society. All rights reserved.