162 resultados para industrial classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holistic representations of natural scenes is an effective and powerful source of information for semantic classification and analysis of arbitrary images. Recently, the frequency domain has been successfully exploited to holistically encode the content of natural scenes in order to obtain a robust representation for scene classification. In this paper, we present a new approach to naturalness classification of scenes using frequency domain. The proposed method is based on the ordering of the Discrete Fourier Power Spectra. Features extracted from this ordering are shown sufficient to build a robust holistic representation for Natural vs. Artificial scene classification. Experiments show that the proposed frequency domain method matches the accuracy of other state-of-the-art solutions. © 2008 Springer Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The industrial landscape is becoming increasingly complex and dynamic, with innovative technologies stimulating the emergence of new industries and business models. This paper presents a preliminary framework for mapping industrial emergence, based on roadmapping principles, in order to understand the nature and characteristics of such phenomena. The focus at this stage is on historical examples of industrial emergence, with the preliminary framework based on observations from 20 'quick scan' maps, one of which is used to illustrate the framework. The learning from these historical cases, combined with further industrial consultation and literature review, will be used to develop practical methods for strategy and policy application. The paper concludes by summarising key learning points and further work needed to achieve these outcomes. © 2009 PICMET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From its origins in the US electronics sector in the 1970s, technology roadmapping has been adapted (and adopted) widely, for many different innovation, strategy and policy applications. Communication is commonly cited as one of the key benefi ts of roadmapping, particularly in terms of the process that brings different organizational perspectives together, with the roadmap providing a common visual 'language'. There is signifi cant demand for methods that are agile, in the sense of being rapid, flexible and effective to apply, focused on strategic decisions and actions. 'Fast-start' roadmapping workshop techniques enable key stakeholders to address strategic issues efficiently using the visual structure of roadmaps to capture, discuss, prioritize, explore and communicate. This paper presents the learning from a set of five diverse applications of the fast-start approach in the Basque Country, which demonstrate the agility of the technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to stimulate, identify and nurture new industries is a prominent challenge in advanced economies. While basic science represents a valuable source of new ideas and opportunities, it can often take decades before this science finally finds application in the market. While numerous studies have to date focused on aspects of industrial evolution, (e.g. innovation, internationalisation, new product introduction, technological lifecycles and emerging technologies), far fewer have focused on technology-based industrial emergence. It is clear that if assistance is to be provided to firms and industrial policymakers attempting to navigate industrial emergence then we need an improved understanding of the characteristics and dynamics of this phenomenon. Accordingly, this paper reviews published work from a range of disparate disciplines - evolutionary theory, social construction of technology (SCOT), complexity science, industrial dynamics and technology management - to identify these dynamics. Through this review we conceptualise industrial emergence as a co-evolutionary process in which nonlinear dynamics operate. Industrial emergence is sensitive to the initial availability of resources and the market applications, with growth dependent on the supply-demand coupling, agents' actions to reduce uncertainty and catalytic events. Through synthesizing these key dynamics we go on to propose a conceptual model for industrial emergence. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates several approaches to bootstrapping a new spoken language understanding (SLU) component in a target language given a large dataset of semantically-annotated utterances in some other source language. The aim is to reduce the cost associated with porting a spoken dialogue system from one language to another by minimising the amount of data required in the target language. Since word-level semantic annotations are costly, Semantic Tuple Classifiers (STCs) are used in conjunction with statistical machine translation models both of which are trained from unaligned data to further reduce development time. The paper presents experiments in which a French SLU component in the tourist information domain is bootstrapped from English data. Results show that training STCs on automatically translated data produced the best performance for predicting the utterance's dialogue act type, however individual slot/value pairs are best predicted by training STCs on the source language and using them to decode translated utterances. © 2010 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most HMM-based TTS systems use a hard voiced/unvoiced classification to produce a discontinuous F0 signal which is used for the generation of the source-excitation. When a mixed source excitation is used, this decision can be based on two different sources of information: the state-specific MSD-prior of the F0 models, and/or the frame-specific features generated by the aperiodicity model. This paper examines the meaning of these variables in the synthesis process, their interaction, and how they affect the perceived quality of the generated speech The results of several perceptual experiments show that when using mixed excitation, subjects consistently prefer samples with very few or no false unvoiced errors, whereas a reduction in the rate of false voiced errors does not produce any perceptual improvement. This suggests that rather than using any form of hard voiced/unvoiced classification, e.g., the MSD-prior, it is better for synthesis to use a continuous F0 signal and rely on the frame-level soft voiced/unvoiced decision of the aperiodicity model. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach based on Discriminant Analysis to map a high dimensional image feature space onto a subspace which has the following advantages: 1. each dimension corresponds to a semantic likelihood, 2. an efficient and simple multiclass classifier is proposed and 3. it is low dimensional. This mapping is learnt from a given set of labeled images with a class groundtruth. In the new space a classifier is naturally derived which performs as well as a linear SVM. We will show that projecting images in this new space provides a database browsing tool which is meaningful to the user. Results are presented on a remote sensing database with eight classes, made available online. The output semantic space is a low dimensional feature space which opens perspectives for other recognition tasks. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life is full of difficult choices. Everyone has their own way of dealing with these, some effective, some not. The problem is particularly acute in engineering design because of the vast amount of information designers have to process. This paper deals with a subset of this set of problems: the subset of selecting materials and processes, and their links to the design of products. Even these, though, present many of the generic problems of choice, and the challenges in creating tools to assist the designer in making them. The key elements are those of classification, of indexing, of reaching decisions using incomplete data in many different formats, and of devising effective strategies for selection. This final element - that of selection strategies - poses particular challenges. Product design, as an example, is an intricate blend of the technical and (for want of a better word) the aesthetic. To meet these needs, a tool that allows selection by analysis, by analogy, by association and simply by 'browsing' is necessary. An example of such a tool, its successes and remaining challenges, will be described.