142 resultados para fast muons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a methodology that enables fast and reasonably accurate prediction of the reliability of power electronic modules featuring IGBTs and p-i-n diodes, by taking into account thermo-mechanical failure mechanisms of the devices and their associated packaging. In brief, the proposed simulation framework performs two main tasks which are tightly linked together: (i) the generation of the power devices' transient thermal response for realistic long load cycles and (ii) the prediction of the power modules' lifetime based on the obtained temperature profiles. In doing so the first task employs compact, physics-based device models, power losses lookup tables and polynomials and combined material-failure and thermal modelling, while the second task uses advanced reliability tests for failure mode and time-to-failure estimation. The proposed technique is intended to be utilised as a design/optimisation tool for reliable power electronic converters, since it allows easy and fast investigation of the effects that changes in circuit topology or devices' characteristics and packaging have on the reliability of the employed power electronic modules. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO. This results in the ability to simulate the transition with detailed chemistry in very short computation times. The tables are then used to optimise the transition with the goal of reducing NO x emissions and fluctuations in IMEP. Copyright © 2010 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast response sensor for measuring carbon dioxide concentration has been developed for laboratory research and tested on a spark ignition engine. The sensor uses the well known infra-red absorption technique with a miniaturized detection system and short capillary sampling tubes, giving a time constant of approximately 5 milliseconds; this is sufficiently fast to observe changes in CO2 levels on a cycle-by-cycle basis under normal operating conditions. The sensor is easily located in the exhaust system and operates continuously. The sensor was tested on a standard production four cylinder spark-ignition engine to observe changes in CO2 concentration in exhaust gas under steady state and transient operating conditions. The processed sensor signal was compared to a standard air-to-fuel ratio (AFR) sensor in the exhaust stream and the results are presented here. The high frequency response CO2 measurements give new insights into both engine and catalyst transient operation. Copyright © 1999 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding mixture formation phenomena during the first few cycles of an engine cold start is extremely important for achieving the minimum engine-out emission levels at the time when the catalytic converter is not yet operational. Of special importance is the structure of the charge (film, droplets and vapour) which enters the cylinder during this time interval as well as its concentration profile. However, direct experimental studies of the fuel behaviour in the inlet port have so far been less than fully successful due to the brevity of the process and lack of a suitable experimental technique. We present measurements of the hydrocarbon (HC) concentration in the manifold and port of a production SI engine using the Fast Response Flame Ionisation Detector (FRFID). It has been widely reported in the past few years how the FRFID can be used to study the exhaust and in-cylinder HC concentrations with a time resolution of a few degrees of crank angle, and the device has contributed significantly to the understanding of unburned HC emissions. Using the FRFID in the inlet manifold is difficult because of the presence of liquid droplets, and the low and fluctuating pressure levels, which leads to significant changes in the response time of the instrument. However, using recently developed procedures to correct for the errors caused by these effects, the concentration at the sampling point can be reconstructed to align the FRFID signal with actual events in the engine. © 1996 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, "Decay Heat Power in Light Water Reactors," American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. The performance achievable by the unity conversion ratio cores of these reactors was compared to an existing supercritical carbon dioxide-cooled (S-CO2) fast reactor design and an uprated version of an existing sodium-cooled fast reactor. All concepts have cores rated at 2400 MWt. The cores of the liquid-cooled reactors are placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchangers (IHXs) coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. The S-CO2 reactor is directly coupled to the S-CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced reactor vessel auxiliary cooling system (RVACS) and a passive secondary auxiliary cooling system (PSACS). The selection of the water-cooled versus air-cooled heat sink for the PSACS as well as the analysis of the probability that the PSACS may fail to complete its mission was performed using risk-informed methodology. In addition to these features, all reactors were designed to be self-controllable. Further, the liquid-cooled reactors utilized common passive decay heat removal systems whereas the S-CO2 uses reliable battery powered blowers for post-LOCA decay heat removal to provide flow in well defined regimes and to accommodate inadvertent bypass flows. The multiple design limits and challenges which constrained the execution of the four fast reactor concepts are elaborated. These include principally neutronics and materials challenges. The neutronic challenges are the large positive coolant reactivity feedback, small fuel temperature coefficient, small effective delayed neutron fraction, large reactivity swing and the transition between different conversion ratio cores. The burnup, temperature and fluence constraints on fuels, cladding and vessel materials are elaborated for three categories of material - materials currently available, available on a relatively short time scale and available only with significant development effort. The selected fuels are the metallic U-TRU-Zr (10% Zr) for unity conversion ratio and TRU-Zr (75% Zr) for zero conversion ratio. The principal selected cladding and vessel materials are HT-9 and A533 or A508, respectively, for current availability, T-91 and 9Cr-1Mo steel for relatively short-term availability and oxide dispersion strengthened ferritic steel (ODS) available only with significant development. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl2 (LSFR), sodium (SFR), and supercritical CO2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO2 reflector to achieve negative coolant void worth-one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reprocessing of Light Water Reactor (LWR) spent fuel to recover plutonium or transuranics for use in Sodium cooled Fast Reactors (SFRs) is a distant prospect in the U.S.A. This has motivated our evaluation of potentially cost-effective operation of uranium startup fast reactors (USFRs) in a once-through mode. This review goes beyond findings reported earlier based on a UC fueled MgO reflected SFR to describe a broader parametric study of options. Cores were evaluated for a variety of fuel/coolant/reflector combinations: UC/UZr/UO 2/UN;Na/Pb; MgO/SS/Zr. The challenge is achieving high burnup while minimizing enrichment and respecting both cladding fluence/dpa and reactivity lifetime limits. These parametric studies show that while UC fuel is still the leading contender, UO 2 fuel and ZrH 1.7 moderated metallic fuel are also attractive if UC proves to be otherwise inadequate. Overall, these findings support the conclusion that a competitive fuel cycle cost and uranium utilization compared to LWRs is possible for SFRs operated on a once-through uranium fueled fuel cycle. In addition, eventual transition to TRU recycle mode is studied, as is a small test reactor to demonstrate key features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the neutronic design of a liquid salt cooled fast reactor with flexible conversion ratio. The main objective of the design is to accommodate interchangeably within the same reactor core alternative transuranic actinides management strategies ranging from pure burning to self-sustainable breeding. Two, the most limiting, core design options with unity and zero conversion ratios are described. Ternary, NaCl-KCl-MgCl2 salt was chosen as a coolant after a rigorous screening process, due to a combination of favourable neutronic and heat transport properties. Large positive coolant temperature reactivity coefficient was identified as the most significant design challenge. A wide range of strategies aiming at the reduction of the coolant temperature coefficient to assure self-controllability of the core in the most limiting unprotected accidents were explored. However, none of the strategies resulted in sufficient reduction of the coolant temperature coefficient without significantly compromising the core performance characteristics such as power density or cycle length. Therefore, reactivity control devices known as lithium thermal expansion modules were employed instead. This allowed achieving all the design goals for both zero and unity conversion ratio cores. The neutronic feasibility of both designs was demonstrated through calculation of reactivity control and fuel loading requirements, fluence limits, power peaking factors, and reactivity feedback coefficients. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work has investigated the use of O2 concentration in the intake manifold as a control variable for diesel engines. It has been recognised as a very good indicator of NOX emissions especially during transient operation, however, much of the work is concentrated on estimating the O2 concentration as opposed to measuring it. This work investigates Universal Exhaust Gas Oxygen (UEGO) sensors and their potential to be used for such measurements. In previous work it was shown that these sensors can be operated in a controlled pressure environment such that their response time is of the order 10ms. In this paper, it is shown how the key causes of variation (and therefore potential sources of error) in sensor output, namely, pressure and temperature are largely mitigated by operating the sensors in such an environment. Experiments were undertaken on a representative light duty diesel engine using modified UEGO sensors in the intake and exhaust system. Results from other fast emissions measuring equipment are also shown and it is seen that the UEGO sensors are capable of giving an accurate measurement of O2 and EGR. Copyright © 2013 SAE International.