135 resultados para design process


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model. A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements. This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function. The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors. The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore, no unphysical phenomena were predicted. This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame. Copyright © 2012 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges. © 2012 by Jerome Jarrett and Tiziano Ghisu.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2014 by ASME. Two types of foldable rings are designed using polynomial continuation. The first type of ring, when deployed, forms regular polygons with an even number of sides and is designed by specifying a sequence of orientations which each bar must attain at various stages throughout deployment. A design criterion is that these foldable rings must fold with all bars parallel in the stowed position. At first, all three Euler angles are used to specify bar orientations, but elimination is also used to reduce the number of specified Euler angles to two, allowing greater freedom in the design process. The second type of ring, when deployed, forms doubly plane-symmetric (irregular) polygons. The doubly symmetric rings are designed using polynomial continuation, but in this example a series of bar end locations (in the stowed position) is used as the design criterion with focus restricted to those rings possessing eight bars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The utilisation of good design practices in the development of complex health services is essential to improving quality. Healthcare organisations, however, are often seriously out of step with modern design thinking and practice. As a starting point to encourage the uptake of good design practices, it is important to understand the context of their intended use. This study aims to do that by articulating current health service development practices. METHODS: Eleven service development projects carried out in a large mental health service were investigated through in-depth interviews with six operation managers. The critical decision method in conjunction with diagrammatic elicitation was used to capture descriptions of these projects. Stage-gate design models were then formed to visually articulate, classify and characterise different service development practices. RESULTS: Projects were grouped into three categories according to design process patterns: new service introduction and service integration; service improvement; service closure. Three common design stages: problem exploration, idea generation and solution evaluation - were then compared across the design process patterns. Consistent across projects were a top-down, policy-driven approach to exploration, underexploited idea generation and implementation-based evaluation. CONCLUSIONS: This study provides insight into where and how good design practices can contribute to the improvement of current service development practices. Specifically, the following suggestions for future service development practices are made: genuine user needs analysis for exploration; divergent thinking and innovative culture for idea generation; and fail-safe evaluation prior to implementation. Better training for managers through partnership working with design experts and researchers could be beneficial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses a new way for handling distributed design know as the Macro concept. It is based round the assumption that future design teams will become more distributed in nature as industry exploits the Internet and other integrated communication and data exchange systems. The paper notes that this concept is part of an attack on the problems associated with the total process of Distribute Multi-Disciplinary design and Optimisation. The concepts rely on the creation of distributed self-building and self-organising teams made up from members who are globally distributed. The paper describes both the approach adopted and its implementation in a prototype software system operating over the Internet. In essence the work presented is describing a novel method for implementing a distributed design process which is far from complete but which is producing challenging ideas. © 2000 by Cranfield University.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most important issues facing the helicopter industry today is helicopter noise, in particular transonic rotor noise. It is the main factor limiting cruise speeds, and there is real demand for efficient and reliable prediction methods which can be used in the rotor design process. This paper considers the Ffowcs Williams-Hawkings equation applied to a permeable control surface. The surface is chosen to be as small as possible, while enclosing both the blade and any transonic flow regions. This allows the problematic quadrupole term to always be neglected, and requires only near field CFD input data. It is therefore less computationally intensive than existing prediction methods, and moreover retains the physical interpretation of the sources in terms of thickness, loading and shock-associated noise. A computer program has been developed which implements the permeable surface form of retarded time formulation. The program has been validated and subsequently used to validate an acoustic 2-D CFD code. It is fast and reliable for subsonic motion, but it is demonstrated that it cannot be used at high subsonic or supersonic speeds. A second computer program implementing a more general formulation has also been developed and is presently being validated. This general formulation can be applied at high subsonic and supersonic speeds, except under one specific condition. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Underground constructions in soft ground may lead to settlement damage to existing buildings. In The Netherlands the situation is particularly complex, because of the combination of soft soil, fragile pile foundations and brittle, unreinforced masonry façades. The tunnelling design process in urban areas requires a reliable risk damage assessment. In the engineering practice the current preliminary damage assessment is based on the limiting tensile strain method (LTSM). Essentially this is an uncoupled analysis, in which the building is modelled as an elastic beam subject to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. The soil-structure interaction is included only as a ratio between the soil and the building stiffness. In this paper, a coupled approach is evaluated. The soil-structure interaction in terms of normal and shear behaviour is represented by interface elements and a cracking model for masonry is included. This project aims to improve the existing damage classification system for masonry buildings subjected to tunnel-induced settlement, in order to evaluate the necessity of strengthening techniques or mitigation measures.