131 resultados para chirped pulse
Resumo:
A theoretical study compares 100 Gb/s Ethernet links and finds that multi-pulse and hybrid CAP-16/QAM-16 (PAM-8) schemes support transmission over 10 km (2 km) SMF. Multi-pulse and CAP-16/QAM-16 need 2× the number of arithmetic operations and 7× or 3× the number of filter taps respectively but exhibit reduced power dissipation compared with PAM-8.
Resumo:
We report an ultrafast fiber laser based on carbon nanotube saturable absorber. 84 fs pulses are generated directly from the fiber oscillator with 61.2 nm spectral width. © 2011 Optical Society of America.
Resumo:
This paper reports a monolithically integrated mode-locked narrow stripe QD MOPA operating at 1300nm generating a stable 20GHz pulse train with an average power of 46.4mW and a pulse duration of 8.3ps. © Optical Society of America.
Resumo:
The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.
Resumo:
The authors present numerical simulations of ultrashort pulse generation by a technique of linear spectral broadening in phase modulators and compression in dispersion compensating fibre, followed by a further stage of soliton compression in dispersion shifted fibre. This laser system is predicted to generate pulses of 140 fs duration with a peak power of 1.5 kW over a wide, user selectable repetition rate range while maintaining consistent characteristics of stability and pulse quality. The use of fibre compressors and commercially available modulators is expected to make the system setup compact and cost-effective. © The Institution of Engineering and Technology 2014.
Resumo:
We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.
Resumo:
Pulse generation from a mode-locked single-section 1.55μm quantum-dash FP laser is demonstrated under continuous-wave operation. A 270GHz, 580fs pulse train is achieved by applying frequency multiplication using fiber dispersion. ©2009 Optical Society of America.
Resumo:
Colliding pulse mode-locking is demonstrated for the first time in quantum-dot lasers. Close to transform limited, 7ps, 20GHz pulses are achieved using an absorber length considerably longer than typically used in similar quantum-well lasers. © 2004 Optical Society of America.
Resumo:
This paper reviews simulations of integrated components for ultra-short pulse generation and shaping. Optimised component designs are reported, minimising the major impact that chirp and saturation effects have, even where ultra-fast nonlinearities are used. © 2005 OSA/IPRA.