157 resultados para capability mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the settlement of instrumented 2 × 2 model pile groups in liquefiable soil based on the results of dynamic centrifuge tests. The piles are end-bearing in dense sand, and are instrumented such that base, shaft and total pile load components can be measured. The data suggest that the overall co-seismic group settlement is accrued from incremental settlements of the individual piles as the group rocks under the action of the kinematic and inertial lateral loads. A Newmarkian framework for describing this behaviour is presented in which permanent settlement is incremented whenever the load in any of the piles exceeds the capacity of the soil to support the pile. This bearing capacity of the piles in liquefied soil is estimated based on measured dynamic soil properties during shaking and observations of the changes in load carried by the piles. The contribution of the pile cap in reducing settlement is also discussed. © 2008 ASCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The destruction mechanism in large area IGCTs (Integrated Gate Commutated Thyristors) under inductive switching conditions is analyzed in detail. The three-dimensional nature of the turn-off process in a 91mm diameter wafer is simulated with a two-dimensional representation. Simulation results show that the final destruction is caused by the uneven dynamic avalanche current distribution across the wafer. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns the optimisation of casing grooves and the important influence of stall inception mechanism on groove performance. Installing casing grooves is a well known technique for improving the stable operating range of a compressor, but the wide-spread use of grooves is restricted by the loss of efficiency and flow capacity. In this paper, laboratory tests are used to examine the conditions under which casing treatment can be used to greatest effect. The use of a single casing groove was investigated in a recently published companion paper. The current work extends this to multiple-groove treatments and considers their performance in relation to stall inception mechanisms. Here it is shown that the stall margin gain from multiple grooves is less than the sum of the gains if the grooves were used individually. By contrast, the loss of efficiency is additive as the number of grooves increases. It is then shown that casing grooves give the greatest stall margin improvement when used in a compressor which exhibits spike-type stall inception, while modal activity before stall can dramatically reduce the effectiveness of the grooves. This finding highlights the importance of being able to predict the stall inception mechanism which might occur in a given compressor before and after grooves are added. Some published prediction techniques are therefore examined, but found wanting. Lastly, it is shown that casing grooves can, in some cases, be used to remove rotor blades and produce a more efficient, stable and light-weight rotor. © 2010 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our group recently reproduced the water-assisted growth method, so-called "SuperGrowth", of millimeter-thick single-walled carbon nanotube (SWNT) forests by using C2H4/H2/H2O/Ar reactant gas and Fe/Al2O3, catalyst. In this current work, a parametric study was carried out on both reaction and catalyst conditions. Results revealed that a thin Fe catalyst layer (about 0.5 nm) yielded rapid growth of SWNTs only when supported on Al2O3, and that Al2O3 support enhanced the activity of Fe, Co, and Ni catalysts. The growth window for the rapid SWNT growth was narrow, however. Optimum amount of added H2O increased the SWNT growth rate but further addition of H2O degraded both the SWNT growth rate and quality. Addition of H2 was also essential for rapid SWNT growth, but again, further addition decreased both the SWNT growth rate and quality. Because Al2O3 catalyzes hydrocarbon reforming, Al2O3 support possibly enhances the SWNT growth rate by supplying the carbon source to the catalyst nanoparticles. The origin of the narrow window for rapid SWNT growth is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concerns over loosely compacted fill slopes stability in Hong Kong arouse in the past few decades, since the Sau Mau Ping disasters in 1972 and 1976. Research conducted on loose fill slopes in the past few years aimed to understand the failure mechanisms of a loosely compacted fill slope. Recently, layering effect has been hypothesised to be a possible condition in the fill slopes leading to a fast flowslide triggered by a rise of water table. Centrifuge experiments were conducted to investigate the layering effect on a model granular slope and hence to determine the triggering mechanisms of seepage induced slope failure. Test results showed that slope failure can be easily triggered in layered fill model slopes when seepage is restricted and localised pore water pressure is allowed to build up within the slope. © 2006 Taylor & Francis Group, London.