228 resultados para axial length
Resumo:
Detailed measurements have been made of the transient stalling process in an axial compressor stage. The stage is of high hub-casing ratio and stall is initiated in the rotor. If the rotor tip clearance is small stall inception occurs at the hub, but at clearances typical for a multistage compressor the inception is at the tip. The crucial quantity in both cases is the blockage caused by the endwall boundary layer. Prior to stall disturbances rotate around the inlet flow in sympathy with rotating variations in the endwall blockage; these can persist for some time prior to stall, rising and falling in amplitude before the final increase which occurs as the compressor stalls.
Resumo:
Part 1 of this paper reanalyzed previously published measurements from the rotor of a low-speed, single-stage, axial-flow turbine, which highlighted the unsteady nature of the suction surface transition process. Part 2 investigates the significance of the wake jet and the unsteady frequency parameter. Supporting experiments carried out in a linear cascade with varying inlet turbulence are described, together with a simple unsteady transition model explaining the features of seen in the turbine.
Resumo:
Previously published measurements in a low-speed, single-stage, axial-flow turbine have been reanalyzed in the light of more recent understanding. The measurements include time-resolved hot-wire traverses and surface hot film gage measurements at the midspan of the rotor suction surface with three different rotor-stator spacings. This paper investigates the suction surface boundary layer transition process, using surface-distance time plots and boundary layer cross sections to demonstrate the unsteady and two-dimensional nature of the process.
Resumo:
Detailed measurements have been made of the transient stalling process in an axial compressor stage. The stage is of high hub-casing ratio and stall is initiated in the rotor. If the rotor tip clearance is small stall inception occurs at the hub, but at clearances typical for a multistage compressor the inception is at the tip. The crucial quantity in both cases is the blockage caused by the endwall boundary layer. Prior to stall, disturbances rotate around the inlet flow in sympathy with rotating variations in the endwall blockage.
Resumo:
This paper describes measurements of the performance of a research stage operating in isolation and as part of a multistage compressor. It is shown that the stall point and the stalled performance of the stage are properties of the system in which it operates rather than a property of the stage itself. The consequences of this for the estimation of the stall point for compressors and compression systems are discussed. The support that the measurements give to assumptions made by mathematical models which use the concept of an 'underlying axisymmetric' characteristic, are highlighted.
Resumo:
The phenomenon of tip leakage has been studied in two linear cascades of turbine blades. The investigation includes an examination of the performance of the cascades with a variety of tip geometries. The effects of using plain tips, suction side squealers, and pressure side squealers are reported. Traverses of the exit flow field were made in order to determine the overall performance. A method of calculating the tip discharge coefficients for squealer geometries is put forward. In linking the tip discharge coefficient and cascade losses, a procedure for predicting the relative performance of tip geometries is developed. The model is used to examine the results obtained using the different tip treatments and to highlight the important aspects of the loss generation process.