135 resultados para Varactor diode


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotube is one of the promising materials for exploring new concepts in solar energy conversion and photon detection. Here, we report the first experimental realization of a single core/shell nanowire photovoltaic device (2-4μm) based on carbon nanotube and amorphous silicon. Specifically, a multi-walled carbon nanotube (MWNTs) was utilized as the metallic core, on which n-type and intrinsic amorphous silicon layers were coated. A Schottky junction was formed by sputtering a transparent conducting indium-tin-oxide layer to wrap the outer shell of the device. The single coaxial nanowire device showed typical diode ratifying properties with turn-on voltage around 1V and a rectification ratio of 104 when biased at ±2V. Under illumination, it gave an open circuit voltage of ∼0.26V. Our study has shown a simple and useful platform for gaining insight into nanowire charge transport and collection properties. Fundamental studies of such nanowire device are important for improving the efficiency of future nanowire solar cells or photo detectors. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of picosecond superradiant pulses from 408nm a GaN/InGaN laser diode is demonstrated for the first time. Pulses with peak powers above 2.8W, pulse energy of 57pJ and durations of 1.4ps are generated. © 2012 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first monolithically integrated semiconductor pulse source consisting of a mode-locked laser diode, Mach-Zehnder pulse picker, and semiconductor optical amplifier. Pairs of 5.6 ps pulses are generated at a 250 MHz repetition rate. © 2012 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We fabricate a saturable absorber mirror by coating a graphenefilm on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ∼1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass. © 2013 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This book presents physics-based models of bipolar power semiconductor devices and their implementation in MATLAB and Simulink. The devices are subdivided into different regions, and the operation in each region, along with the interactions at the interfaces which are analyzed using basic semiconductor physics equations that govern their behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as the junction voltages and the carrier distribution in different regions of the device, can be obtained using the models. Table of Contents: Introduction to Power Semiconductor Device Modeling/Physics of Power Semiconductor Devices/Modeling of a Power Diode and IGBT/IGBT Under an Inductive Load-Switching Condition in Simulink/Parameter Extraction. © 2013 by Morgan & Claypool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present planar mesa termination structure with high k dielectric Al2O3 for high-voltage diamond Schottky barrier diode. Analysis, design, and optimization are carried out by simulations using finite element technology computer-aided design (TCAD) Sentaurus Device software. The performances of planar mesa termination structure are compared to those of conventional field plate termination structure. It is found that optimum geometry of planar mesa terminated diode requires shorter metal plate extension (1/3 of the field plate terminated diode). Consequently, planar mesa terminated diode can be designed with bigger Schottky contact to increase its current carrying capability. Breakdown performance of field plate termination structure is limited at 1480 V due to peak electric field at the corner of Schottky contact (no oxide breakdown occurs). In contrast, peak electric field in planar mesa termination structure only occurs in the field oxide such that its breakdown performance is highly dependent on the oxide material. Due to Al2O3 breakdown, planar mesa termination structure suffers premature breakdown at 1440 V. Considering no oxide breakdown occurs, planar mesa termination structure can realize higher breakdown voltage of 1751 V. Therefore, to fully realize the potential of planar mesa terminated diode, it is important to choose suitable high k dielectric material with sufficient breakdown electric field for the field oxide. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IGBTs realise high-performance power converters. Unfortunately, with fast switching of the IGBT-free wheel diode chopper cell, such circuits are intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally needed on the load and supply side. In order to design these EMI suppression components, designers need to predict the EMI level with reasonable accuracy for a given structure and operating mode. Simplifying the transient IGBT switching current and voltage into a multiple slope switching waveform approximation offers a feasible way to estimate conducted EMI with some accuracy. This method is dependent on the availability of high-fidelity measurements. Also, that multiple slope approximation needs careful and time-costly IGBT parameters optimisation process to approach the real switching waveform. In this paper, Active Voltage Control Gate Drive(AVC GD) is employed to shape IGBT switching into several defined slopes. As a result, Conducted EMI prediction by multiple slope switching approximation could be more accurate, less costly but more friendly for implementation. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop an analytical theory of high-power passively mode-locked lasers with a slow absorber; the theory is valid at pulse energies well exceeding the saturation energy. We analyze the Haus modelocking master equation in the pulse-energy-domain representation, approximating the intensity profile function by a series in the vicinity of its peak value. We consider the high-power operation regime of subpicosecond blue-violet GaN mode-locked diode lasers, using the approach developed. © 2010 Springer Science+Business Media, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The laser-diode parameters at which the steady-state regime of generation becomes unstable are analyzed within the framework of the mode-locking model. The crucial role of the transverse inhomogeneity of the field, pumping intensity, and spectrum width in developing the instabilities of the steady-state regime of generation is demonstrated. The calculated values of the instability threshold are shown to be consistent with the experimental results. © 2008 Springer Science+Business Media, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulses of 15 psec duration were generated by an injection laser with an external dispersive resonator operating in the active mode-locking regime. This regime was attained by subjecting the laser diode to a current of high frequency equal to the intermode interval in the external resonator. The duration of the pulses was determined by an autocorrelation method in which the second harmonic was generated in an LiIO//3 crystal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of large size Si substrates for epitaxy of nitride light emitting diode (LED) structures has attracted great interest because Si wafers are readily available in large diameter at low cost. In addition, such wafers are compatible with existing processing lines for the 6-inch and larger wafer sizes commonly used in the electronics industry. With the development of various methods to avoid wafer cracking and reduce the defect density, the performance of GaN-based LED and electronic devices has been greatly improved. In this paper, we review our methods of growing crack-free InGaN-GaN multiple quantum well (MQW) LED structures of high crystalline quality on Si(111) substrates. The performance of processed LED devices and its dependence on the threading dislocation density were studied. Full wafer-level LED processing using a conventional 6-inch III-V processing line is also presented, demonstrating the great advantage of using large-size Si substrates for mass production of GaN LED devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-performance power switching devices (IGBT/MOSFET) realise high-performance power converters. Unfortunately, with a high switching speed of the IGBT or MOSFET freewheel diode chopper cell, the circuit has intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally demanded on the load and supply side. Although an S-shaped voltage transient with a high order of derivation eliminates the discontinuity and could suppress HF spectrum of EMI emissions, a practical control scheme is still under development. In this paper, Active Voltage Control (AVC) is applied to successfully define IGBT switching dynamics with a smoothed Gaussian waveform so a reduced EMI can be achieved without extra EMI suppression devices. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents for the first time the performance of a silicon-on-insulator (SOI) p-n thermodiode, which can operate in an extremely wide temperature range of 200°C to 700°C while maintaining its linearity. The thermodiode is embedded in a thin dielectric membrane underneath a tungsten microheater, which allows the diode characterization at very high temperature (> 800°C). The effect of the junction area (Aj) on the thermodiode linearity, sensitivity and self-heating is experimentally and theoretically investigated. Results on the long-term diode stability at high temperature are also reported. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A time multiplexed rectangular Zernike modal wavefront sensor based on a nematic phase-only liquid crystal spatial light modulator and specially designed for a high power two-electrode tapered laser diode which is a compact and novel free space optical communication source is used in an adaptive beam steering free space optical communication system, enabling the system to have 1.25 GHz modulation bandwidth, 4.6° angular coverage and the capability of sensing aberrations within the system and caused by atmosphere turbulence up to absolute value of 0.15 waves amplitude and correcting them in one correction cycle. Closed-loop aberration correction algorithm can be implemented to provide convergence for larger and time varying aberrations. Improvement of the system signal-to-noise-ratio performance is achieved by aberration correction. To our knowledge, it is first time to use rectangular orthonormal Zernike polynomials to represent balanced aberrations for high power rectangular laser beam in practice. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-switching diodes have been fabricated within a single layer of indium-gallium zinc oxide (IGZO). Current-voltage (I-V) measurements show the nanometer-scale asymmetric device gave a diode-like response. Full current rectification was achieved using very narrow channel widths of 50nm, with a turn-on voltage, Von, of 2.2V. The device did not breakdown within the -10V bias range measured. This single diode produced a current of 0.1μA at 10V and a reverse current of less than 0.1nA at -10V. Also by adjusting the channel width for these devices, Von could be altered; however, the effectiveness of the rectification also changed. © 2013 IEEE.