132 resultados para Underground


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil–structure interaction mechanisms. The significance of these observations is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prediction of the long-term settlement of clay soils over tunnels requires a knowledge of the permeability of the soil and of the tunnel lining; however, determination of the lining permeability in the field is difficult. An important contributor to this problem is the lack of knowledge concerning the permeability of the grout between the lining and the soil. This paper presents the results of tests to characterise the properties of grout samples from London Underground tunnels, investigating permeability, porosity, micro structure and composition. The tests revealed that the newer grout was impermeable relative to the surrounding clay. However, the older samples showed much greater permeabilities and an altered grout composition, suggesting that degradation had taken place. Exposure to groundwater appeared to have caused carbonation and sulfate reaction. The combination of chemical reaction and leaching of cementitious and degradation products appears to have made these grouts more permeable, so that the grout could act as a drainage path rather than a barrier. This challenges the typical assumption that the grout acts as an impermeable barrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the sources of uncertainly in models used to predict vibration from underground railways. It will become clear from this presentation that by varying parameters by a small amount, consistent with uncertainties in measured data, the predicted vibration levels vary significantly, often by more than 10dB. This error cannot be forecast. Small changes made to soil parameters (Compressive and Shear Wave velocities and density), to slab bending stiffness and mass and to the measurement position give rise to changes in vibration levels of more than lOdB. So if 10dB prediction error results from small uncertainties in soil parameters and measurement position it cannot be sensible to rely on prediction models for accuracy better than 10dB. The presentation will demonstrate in real time the use of the new - and freely-available - PiP software for calculating vibration from railway tunnels in real time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the biggest issues for underground construction in a densely built-up urban environment is the potentially adverse impact on buildings adjacent to deep excavations. In Singapore, a building damage assessment is usually carried out using a three-staged approach to assess the risk of damage caused by major underground construction projects. However, the tensile strains used for assessing the risk of building damage are often derived using deflection ratios and horizontal strains under 'greenfield' conditions. This ignores the effects of building stiffness and in many cases may be conservative. This paper presents some findings from a study on the response of buildings to deep excavations. Firstly, the paper discusses the settlement response of an actual building - the Singapore Art Museum - adjacent to a deep excavation. By comparing the monitored building settlement with the adjacent ground settlement markers, the influence of building stiffness in modifying the response to excavation-induced settlements is observed. Using the finite element method, a numerical study on the building response to movements induced by deep excavations found a consistent relationship between the building modification factor and a newly defined relative bending stiffness of the building. This relationship can be used as a design guidance to estimate the deflection ratio in a building from the greenfield condition. By comparing the case study results with the design guidance developed from finite element analysis, this paper presents some important characteristics of the influence of building stiffness on building damages for deep excavations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of cast-iron tunnel segments used in London Underground tunnels was investigated using the 3-D finite element (FE) method. A numerical model of the structural details of cast-iron segmental joints such as bolts, panel and flanges was developed and its performance was validated against a set of full-scale tests. Using the verified model, the influence of structural features such as caulking groove and bolt pretension was examined for both rotational and shear loading conditions. Since such detailed modelling of bolts increases the computational time when a full scale segmental tunnel is analysed, it is proposed to replace the bolt model to a set of spring models. The parameters for the bolt-spring models, which consider the geometry and material properties of the bolt, are proposed. The performance of the combined bolt-spring and solid segmental models are evaluated against a more conventional shell-spring model. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing. One of the consequences is a greater attention to the risk of damage on existing structures. Thus, the assessment of potential damage of surface buildings has become an essential stage in the excavation projects in urban areas (Chapter 1). The current damage risk assessment procedure is based on strong simplifications, which not always lead to conservative results. Object of this thesis is the development of an improved damage classification system, which takes into account the parameters influencing the structural response to settlement, like the non-linear behaviour of masonry and the soil-structure interaction. The methodology used in this research is based on experimental and numerical modelling. The design and execution of an experimental benchmark test representative of the problem allows to identify the principal factors and mechanisms involved. The numerical simulations enable to generalize the results to a broader range of physical scenarios. The methodological choice is based on a critical review of the currently available procedures for the assessment of settlement-induced building damage (Chapter 2). A new experimental test on a 1/10th masonry façade with a rubber base interface is specifically designed to investigate the effect of soil-structure interaction on the tunnelling-induced damage (Chapter 3). The experimental results are used to validate a 2D semi-coupled finite element model for the simulation of the structural response (Chapter 4). The numerical approach, which includes a continuum cracking model for the masonry and a non-linear interface to simulate the soil-structure interaction, is then used to perform a sensitivity study on the effect of openings, material properties, initial damage, initial conditions, normal and shear behaviour of the base interface and applied settlement profile (Chapter 5). The results assess quantitatively the major role played by the normal stiffness of the soil-structure interaction and by the material parameters defining the quasi-brittle masonry behaviour. The limitation of the 2D modelling approach in simulating the progressive 3D displacement field induced by the excavation and the consequent torsional response of the building are overcome by the development of a 3D coupled model of building, foundation, soil and tunnel (Chapter 6). Following the same method applied to the 2D semi-coupled approach, the 3D model is validated through comparison with the monitoring data of a literature case study. The model is then used to carry out a series of parametric analyses on geometrical factors: the aspect ratio of horizontal building dimensions with respect to the tunnel axis direction, the presence of adjacent structures and the position and alignment of the building with respect to the excavation (Chapter 7). The results show the governing effect of the 3D building response, proving the relevance of 3D modelling. Finally, the results from the 2D and 3D parametric analyses are used to set the framework of an overall damage model which correlates the analysed structural features with the risk for the building of being damaged by a certain settlement (Chapter 8). This research therefore provides an increased experimental and numerical understanding of the building response to excavation-induced settlements, and sets the basis for an operational tool for the risk assessment of structural damage (Chapter 9).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground structures constitute crucial components of the transportation networks. Considering their significance for modern societies, their proper seismic design is of great importance. However, this design may become very tricky, accounting of the lack of knowledge regarding their seismic behavior. Several issues that are significantly affecting this behavior (i.e. earth pressures on the structure, seismic shear stresses around the structure, complex deformation modes for rectangular structures during shaking etc.) are still open. The problem is wider for the non-circular (i.e. rectangular) structures, were the soilstructure interaction effects are expected to be maximized. The paper presents representative experimental results from a test case of a series of dynamic centrifuge tests that were performed on rectangular tunnels embedded in dry sand. The tests were carried out at the centrifuge facility of the University of Cambridge, within the Transnational Task of the SERIES EU research program. The presented test case is also numerically simulated and studied. Preliminary full dynamic time history analyses of the coupled soil-tunnel system are performed, using ABAQUS. Soil non-linearity and soil-structure interaction are modeled, following relevant specifications for underground structures and tunnels. Numerical predictions are compared to experimental results and discussed. Based on this comprehensive experimental and numerical study, the seismic behavior of rectangular embedded structures is better understood and modeled, consisting an important step in the development of appropriate specifications for the seismic design of rectangular shallow tunnels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the central part of the Delft railway tunnel project, an underground railway station is being built at very close distance to the existing station building, which is still in operation. Although elaborate sensitivity analyses were made, some unforeseen deformations were encountered during the first phases of the execution process. Especially the installation of temporary sheet pile walls as well as the installation of a huge amount of grout anchor piles resulted in deformations exceeding the predicted final deformations as well as the boundary values defined by a level I limiting tensile strain method (LTSM) approach. In order to ensure the execution process, supplementary analyses were made to predict future deformations, and this for multiple cross sections. These deformations were implemented into a finite element model of the masonry of the building in order to define probable crack formation. This Level II LTSM approach made it possible to increase the initially foreseen deformation criteria and the continuation of the works. Design steps, design models and monitoring results will be explained within this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© Springer International Publishing Switzerland 2015. Making sound asset management decisions, such as whether to replace or maintain an ageing underground water pipe, are critical to ensure that organisations maximise the performance of their assets. These decisions are only as good as the data that supports them, and hence many asset management organisations are in desperate need to improve the quality of their data. This chapter reviews the key academic research on data quality (DQ) and Information Quality (IQ) (used interchangeably in this chapter) in asset management, combines this with the current DQ problems faced by asset management organisations in various business sectors, and presents a classification of the most important DQ problems that need to be tackled by asset management organisations. In this research, eleven semi structured interviews were carried out with asset management professionals in a range of business sectors in the UK. The problems described in the academic literature were cross checked against the problems found in industry. In order to support asset management professionals in solving these problems, we categorised them into seven different DQ dimensions, used in the academic literature, so that it is clear how these problems fit within the standard frameworks for assessing and improving data quality. Asset management professionals can therefore now use these frameworks to underpin their DQ improvement initiatives while focussing on the most critical DQ problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground constructions in soft ground may lead to settlement damage to existing buildings. In The Netherlands the situation is particularly complex, because of the combination of soft soil, fragile pile foundations and brittle, unreinforced masonry façades. The tunnelling design process in urban areas requires a reliable risk damage assessment. In the engineering practice the current preliminary damage assessment is based on the limiting tensile strain method (LTSM). Essentially this is an uncoupled analysis, in which the building is modelled as an elastic beam subject to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. The soil-structure interaction is included only as a ratio between the soil and the building stiffness. In this paper, a coupled approach is evaluated. The soil-structure interaction in terms of normal and shear behaviour is represented by interface elements and a cracking model for masonry is included. This project aims to improve the existing damage classification system for masonry buildings subjected to tunnel-induced settlement, in order to evaluate the necessity of strengthening techniques or mitigation measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Settlements due to underground construction represent a risk for the architectural heritage, especially in The Netherlands, because of the combination of soft soil, fragile pile foundation and brittle, un-reinforced masonry façade. Modelling of soil-structure interaction is fundamental to assess the risk of building damage due to tunnelling. This paper presents results of finite element analyses carried out with different models for a simple masonry wall. Focus is paid on the comparison between coupled, uncoupled and semi-coupled analyses, in which the soil-structure interaction is represented in different ways. In particular, the implementation of a soil-structure interface model in the numerical analyses is analysed, in order to asses its validity. The aim of the research project is the development of a damage classification system for different building typologies.