311 resultados para Turbulence.
Resumo:
The Reynolds number influence on turbulent blocking effects by a rigid plane boundary is studied using direct numerical simulation (DNS). A new forcing method proposed in the second report using Townsend's "simple model eddies" for DNS was extended to generate axisymmetric anisotropic turbulence. A force field is obtained in real space by sprinkling many space-filling "simple model eddies" whose centers are randomly but uniformly distributed in space. The axes of rotation are controlled in this study to generate axisymmetric anisotropic turbulence. The method is applied to a shear-free turbulent boundary layer over a rigid plane boundary and the blocking effects for anisotropic turbulence are investigated. The results show that stationary axisymmetric anisotropic turbulence is generated using the present method. Turbulence intensities near the wall showed good agreements with the rapid distortion theory (RDT) for small t (t ≪ TL), where TL. is the eddy turnover time. The splat effect (i. e. turbulence intensities of the components parallel to the surface are amplified) occurs near the boundary and the viscous effect attenuates the splat effect at the quasi steady state at low Reynolds number as for Isotropic turbulence. Prandtl's secondary flow of the second kind does not occur for low Reynolds number flows, which qualitatively agrees with previous observetion in a mixing-box.
Resumo:
DNS of turbulent hydrogen-air premixed flame is conducted for freely propagating and V-flames, using complex chemical kinetics. The results are analysed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation process. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to predominantly align with the most extensive strain in the region of intense heat release.
Resumo:
Turbulent combustion of stoichiometric hydrogen-air mixture is simulated using direct numerical simulation methodology, employing complex chemical kinetics. Two flame configurations, freely propagating and V-flames stabilized behind a hot rod, are simulated. The results are analyzed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation processes. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to align with the most extensive strain in the region of intense heat release. The combustion in the rod stabilized flame is found to be flamelet like in an average sense and the growth of flame-brush thickness with the downstream distance is represented well by Taylor theory of turbulent diffusion, when the flame-brushes are non-interacting. The thickness is observed to saturate when the flame-brushes interact, which is found to occur in the simulated rod stabilized flame with Taylor micro-scale Reynolds number of 97. © 2011 American Institute of Physics.
Resumo:
We consider unforced, statistically-axisymmetric turbulence evolving in the presence of a background rotation, an imposed stratification, or a uniform magnetic field. We focus on two canonical cases: Saffman turbulence, in which E(κ → 0) ∼ κ 2, and Batchelor turbulence, in which E(κ → 0) ∼ κ 4. It has recently been shown that, provided the large scales evolve in a self-similar manner, then u ⊥ 2ℓ ⊥ 2ℓ // = constant in Saffman turbulence and u ⊥ 2ℓ ⊥ 4ℓ // = constant in Batchelor turbulence (Davidson, 2009, 2010). Here the subscripts ⊥ and // indicate directions perpendicular and parallel to the axis of symmetry, and ℓ ⊥, ℓ //, and u ⊥ are suitably defined integral scales. These constraints on the integral scales allow us to make simple, testable predictions for the temporal evolution of ℓ ⊥, ℓ //, and u ⊥ in rotating, stratified and MHD turbulence.
Resumo:
Turbulence statistics have been measured immediately downstream of a regular grid made of round rods with rod spacing M. 2D-2C PIV was used to analyse a measurement area of 14M x 4M in the down and cross-stream directions respectively. The relevant Reynolds number span the range Re M = U ∞M/ν = 5 500 - 16 500. The Reynolds shear stresses recorded on two parallel measurement planes differently located relative to the grid exhibit significant discrepancies over the first 5M, but have completely homogenised in the cross-stream direction by x/M = 7. The downstream evolution of the two-point velocity correlation functions shows a progressive loss of coherence and a clear trend towards the expected isotropic behavior. The same conclusions apply to measurements taken in the wake of another regular grid made of square rods. Changes in the vortex shedding pattern from the grid were observed at the lowest Reynolds number, with two of the four rod wakes captured shedding in phase with each other but in anti-phase with a third one. The impact of this early flow coherence on the turbulence statistics did not persist due to the homogenisation process.
2D PIV measurements in the near field of grid turbulence using stitched fields from multiple cameras
Resumo:
We present measurements of grid turbulence using 2D particle image velocimetry taken immediately downstream from the grid at a Reynolds number of Re M = 16500 where M is the rod spacing. A long field of view of 14M x 4M in the down- and cross-stream directions was achieved by stitching multiple cameras together. Two uniform biplanar grids were selected to have the same M and pressure drop but different rod diameter D and crosssection. A large data set (10 4 vector fields) was obtained to ensure good convergence of second-order statistics. Estimations of the dissipation rate ε of turbulent kinetic energy (TKE) were found to be sensitive to the number of meansquared velocity gradient terms included and not whether the turbulence was assumed to adhere to isotropy or axisymmetry. The resolution dependency of different turbulence statistics was assessed with a procedure that does not rely on the dissipation scale η. The streamwise evolution of the TKE components and ε was found to collapse across grids when the rod diameter was included in the normalisation. We argue that this should be the case between all regular grids when the other relevant dimensionless quantities are matched and the flow has become homogeneous across the stream. Two-point space correlation functions at x/M = 1 show evidence of complex wake interactions which exhibit a strong Reynolds number dependence. However, these changes in initial conditions disappear indicating rapid cross-stream homogenisation. On the other hand, isotropy was, as expected, not found to be established by x/M = 12 for any case studied. © Springer-Verlag 2012.