170 resultados para Turbines hydrauliques
Resumo:
The unstable combustion that can occur in combustion chambers is a major problem for aeroengines and ground-based industrial gas turbines. Nowadays, CFD provides a flexible, low cost tool to supplement direct measurement. This paper presents simulations of combustion oscillations in a liquid-fuelled experimental rig at the University of Cambridge. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone and to develop inlet and outlet boundary conditions just upstream and downstream of the combustion region enabling the CFD calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in good agreement with experimental measurements. More details about the unstable combustion can be obtained from the simulation results. The approach developed here is expected to provide a powerful tool for the design and operation of stable combustion systems. Copyright © 2009 by ASME.
Resumo:
A description is presented of a time-marking calculation of the unsteady flow generated by the interaction of upstream wakes with a moving blade row. The inviscid equations of motion are solved using a finite volume technique. Wake dissipation is modeled using an artificial viscosity. Predictions are presented for the rotor mid-span section of an axial turbine. Reasonable agreement is found between the predicted and measured unsteady blade surface static pressures and velocities. These and other results confirm that simple theories can be used to explain the phenomena of rotor-stator wake interactions.
Resumo:
This paper describes an experimental investigation of tip clearance flow in a radial inflow turbine. Flow visualization and static pressure measurements were performed. These were combined with hot-wire traverses into the tip gap. The experimental data indicates that the tip clearance flow in a radial turbine can be divided into three regions. The first region is located at the rotor inlet, where the influence of relative casing motion dominates the flow over the tip. The second region is located towards midchord, where the effect of relative casing motion is weakened. Finally a third region exists in the exducer, where the effect of relative casing motion becomes small and the leakage flow resembles the tip flow behaviour in an axial turbine. Integration of the velocity profiles showed that there is little tip leakage in the first part of the rotor because of the effect of scraping. It was found that the bulk of tip leakage flow in a radial turbine passes through the exducer. The mass flow rate, measured at four chordwise positions, was compared with a standard axial turbine tip leakage model. The result revealed the need for a model suited to radial turbines. The hot-wire measurements also indicated a higher tip gap loss in the exducer of the radial turbine. This explains why the stage efficiency of a radial inflow turbine is more affected by increasing the radial clearance than by increasing the axial clearance.
Resumo:
Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.
Resumo:
This paper deals with particle deposition onto solid walls from turbulent flows. The aim of the study is to model particle deposition in industrial flows, such as the one in gas turbines. The numerical study has been carried out with a two fluid approach. The possible contribution to the deposition from Brownian diffusion, turbulent diffusion and shear-induced lift force are considered in the study. Three types of turbulent two-phase flows have been studied: turbulent channel flow, turbulent flow in a bent duct and turbulent flow in a turbine blade cascade. In the turbulent channel flow case, the numerical results from a two-dimensional code show good agreement with numerical and experimental results from other resources. Deposition problem in a bent duct flow is introduced to study the effect of curvature. Finally, the deposition of small particles on a cascade of turbine blades is simulated. The results show that the current two fluid models are capable of predicting particle deposition rates in complex industrial flows.
Resumo:
When designing vertical-axis wind turbines (VAWTs) for deployment in the urban environment, it is desirable to have a low-cost computational model that allows for modelling the coupled interaction of the turbine with the flowfleld. Such a method is presented in this paper, It combines a variation of the multiple streamtube model with a potential method to model flowfleld interactions. A method referred to as "streamtube surgery" is used to couple the influence of the flowfleld with the performance model of the VAWT. This tool is used to explore the instantaneous and cycle-averaged flowflelds of VAWTs. It can also be used to evaluate the influence on performance of multiple VAWTs in dense arrays or to quantify blockage effects of a VAWT in wind tunnel testing.
Resumo:
A type of adaptive, closed-loop controllers known as self-tuning regulators present a robust method of eliminating thermoacoustic oscillations in modern gas turbines. These controllers are able to adapt to changes in operating conditions, and require very little pre-characterisation of the system. One piece of information that is required, however, is the sign of the system's high frequency gain (or its 'instantaneous gain'). This poses a problem: combustion systems are infinite-dimensional, and so this information is never known a priori. A possible solution is to use a Nussbaum gain, which guarantees closed-loop stability without knowledge of the sign of the high frequency gain. Despite the theory for such a controller having been developed in the 1980s, it has never, to the authors' knowledge, been demonstrated experimentally. In this paper, a Nussbaum gain is used to stabilise thermoacoustic instability in a Rijke tube. The sign of the high frequency gain of the system is not required, and the controller is robust to large changes in operating conditions - demonstrated by varying the length of the Rijke tube with time. Copyright © 2008 by Simon J. Illingworth & Aimee S. Morgans.