132 resultados para Transport barriers
Resumo:
The authors have doped RABiTS coated conductor tapes with Ca in an attempt to enhance the transport properties. By diffusing Ca into the YBCO film from a CaZrO3 overlayer, the authors have been able to preferentially dope the grain boundaries of the superconductor. Hence it has been possible to obtain doped tapes which do not have a significantly degraded T-c. The authors have measured the critical currents of doped and undoped samples over a wide range of temperature, magnetic field, and magnetic field angle in order to study the effect of Ca on the grain boundaries. The authors find that doping using short anneal times produces enhanced critical currents in large magnetic fields.
Resumo:
The characteristics of the scalar dissipation rate transport in the corrugated flamelets and the thin reaction zones regimes are studied based on two three-dimensional Direct Numerical Simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. The turbulent flame parameters are so chosen that the database which represents the corrugated flamelets regime has a global Damköhler number Da>1 whereas the database representing the thin reaction zones regime has Da <1. It is demonstrated that the terms originating from the correlation between fluctuating velocity and scalar gradient T1 shows strong Da dependence. The terms originating from dilatation T2, the scalar inner product of gradients of velocity and scalar fields T3 and the correlation between reaction rate and scalar gradients T4 and the dissipation term D2 remain important for both the flames. However, T3 dissipates scalar dissipation rate in the Da > 1 flame while it produces scalar dissipation rate in the Da < 1 flame. This difference is because of the change in the alignment between scalar and velocity gradients
Resumo:
In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC transport current is involved, superconducting coils should be wound where possible using coated conductors with a non-magnetic substrate to reduce the total AC loss in the coil. © 2011 Elsevier B.V. All rights reserved.