189 resultados para Sand-lime products
Resumo:
The soil-pipeline interactions under lateral and upward pipe movements in sand are investigated using DEM analysis. The simulations are performed for both medium and dense sand conditions at different embedment ratios of up to 60. The comparison of peak dimensionless forces from the DEM and earlier FEM analyses shows that, for medium sand, both methods show similar peak dimensionless forces. For dense sand, the DEM analysis gives more gradual transition of shallow to deep failure mechanisms than the FEM analysis and the peak dimensionless forces at very deep depth are higher in the DEM analysis than in the FEM analysis. Comparison of the deformation mechanism suggests that this is due to the differences in soil movements around the pipe associated with its particulate nature. The DEM analysis provides supplementary data of the soil-pipeline interaction in sand at deep embedment condition.
Resumo:
Portland cement is the most commonly and widely used binder in ground improvement soil stabilisation applications. However, many changes are now affecting the selection and application of stabilisation additives. These include the significant environmental impacts of Portland cement, increased use of industrial by-products and their variability, increased range of application of binders and the development of alternative cements and novel additives with enhanced environmental and technical performance. This paper presents results from a number of research projects on the application of a number of Portland cement-blended binders, which offer sustainability advantages over Portland cement alone, in soil stabilisation. The blend materials included ground granulated blastfurnace slag, pulverised fuel ash, cement kiln dust, zeolite and reactive magnesia and stabilised soils, ranging from sand and gravel to clay, and were assessed based on their mechanical performance and durability. The results are presented in terms of strength and durability enhancements offered by those blended binders.
Resumo:
The phenomenon of fracturing in sand as a result of compensation grouting was studied. Processes of fracture initiation and propagation were explained and a parametric study was conducted in order to investigate the factors that cause sand fracturing to occur. Experimental results indicate that fracture initiation requires the existence of a local inhomogeneity around the injection position. Grout mixture in terms of water-cement ratio and fines content had major roles in sand fracturing, whereas injection rate had a minor influence under the tested conditions. © 2009 Taylor & Francis Group.
Resumo:
Saturated sands particularly at low relative density commonly exhibit rises in excess pore pressure when subjected to earthquake loading. The excess pore pressure can approach a maximum value, limited by the initial vertical effective stress. After the completion of earthquake shaking, these excess pore pressures dissipate according to the consolidation equation, which can be solved to produce a Fourier series solution. It will be shown by manipulation of this Fourier series that excess pore pressure traces provide a method for back-calculation of coefficient of consolidation Cv. This method is validated against dissipation curves generated using known values of C v and seen to be more accurate in the middle of the layer. The method is then applied to data recorded in centrifuge tests to evaluate Cv throughout the reconsolidation process following liquefaction conditions. C v is seen to fit better as a function of excess pore pressure ratio than effective stress for the stress levels considered. For the soil investigated, Cv is about three times smaller at excess pore pressure ratio of 0.9 compared to excess pore pressure ratio of 0. Copyright © 1996-2011 ASTM.
Resumo:
The authors use simulation to analyse the resource-driven dependencies between concurrent processes used to create customised products in a company. Such processes are uncertain and unique according to the design changes required. However, they have similar structures. For simulation, a level of abstraction is chosen such that all possible processes are represented by the same activity network. Differences between processes are determined by the customisations that they implement. The approach is illustrated through application to a small business that creates customised fashion products. We suggest that similar techniques could be applied to study intertwined design processes in more complex domains. Copyright © 2011 Inderscience Enterprises Ltd.