170 resultados para SPECTRAL GEOMETRY
Resumo:
The phenomenon of tip leakage has been studied in two linear cascades of turbine blades. The investigation includes an examination of the performance of the cascades with a variety of tip geometries. The effects of using plain tips, suction side squealers, and pressure side squealers are reported. Traverses of the exit flow field were made in order to determine the overall performance. A method of calculating the tip discharge coefficients for squealer geometries is put forward. In linking the tip discharge coefficient and cascade losses, a procedure for predicting the relative performance of tip geometries is developed. The model is used to examine the results obtained using the different tip treatments and to highlight the important aspects of the loss generation process.
Resumo:
In recent years there has been a growing interest amongst the speech research community into the use of spectral estimators which circumvent the traditional quasi-stationary assumption and provide greater time-frequency (t-f) resolution than conventional spectral estimators, such as the short time Fourier power spectrum (STFPS). One distribution in particular, the Wigner distribution (WD), has attracted considerable interest. However, experimental studies have indicated that, despite its improved t-f resolution, employing the WD as the front end of speech recognition system actually reduces recognition performance; only by explicitly re-introducing t-f smoothing into the WD are recognition rates improved. In this paper we provide an explanation for these findings. By treating the spectral estimation problem as one of optimization of a bias variance trade off, we show why additional t-f smoothing improves recognition rates, despite reducing the t-f resolution of the spectral estimator. A practical adaptive smoothing algorithm is presented, whicy attempts to match the degree of smoothing introduced into the WD with the time varying quasi-stationary regions within the speech waveform. The recognition performance of the resulting adaptively smoothed estimator is found to be comparable to that of conventional filterbank estimators, yet the average temporal sampling rate of the resulting spectral vectors is reduced by around a factor of 10. © 1992.
Resumo:
In this paper, a Decimative Spectral estimation method based on Eigenanalysis and SVD (Singular Value Decomposition) is presented and applied to speech signals in order to estimate Formant/Bandwidth values. The underlying model decomposes a signal into complex damped sinusoids. The algorithm is applied not only on speech samples but on a small amount of the autocorrelation coefficients of a speech frame as well, for finer estimation. Correct estimation of Formant/Bandwidth values depend on the model order thus, the requested number of poles. Overall, experimentation results indicate that the proposed methodology successfully estimates formant trajectories and their respective bandwidths.
Resumo:
A semiconductor optical amplifier monolithically integrated with a distributed feedback pump laser is used for non-degenerate four wave mixing applications. Experimental results are presented which illustrate the use of this compact device for both wavelength conversion and dispersion compensation applications at high data rates.
Resumo:
We propose a novel label processor which can recognize multiple spectral-amplitude-code labels using four-wave-mixing sidebands and selective optical filtering. Ten code-labels x 10 Gbps variable-length packets are transmitted over a 200 km single-hop switched network.
Resumo:
Ultrafast self-switching of spectral-amplitude-encoded 40 Gb/s DPSK signals is demonstrated for the first time. Switching between 21 ports with 15nm maximum bin separation is achieved using a single correlator based on HNLF and an AWG. © 2009 IEEE.
Resumo:
To control combustion instabilities occurring in LPP gas turbine combustors, several active and passive systems have been developed in recent years. The combustion chamber cooling geometry has the potential to influence instability feedback loops by absorbing acoustical energy inside the combustor. The design of the cooling liner and the geometry of the cooling plenum and the cooling air flow rate have a significant influence on the absorption characteristics of the system. This paper presents the results of a cold flow study which was carried out in the course of a comprehensive study on the influence of the cooling geometry on combustor thermoacoustics. Absorption characteristics of three different cooling liner geometries and non-perforated plates were determined over a frequency range from 50 Hz to 600 Hz for different cooling flow rates and different cooling plenum volumes. The experimental results compared well with results from a low order thermoacoustic network model. The acoustic energy absorption spectrum of a cooling liner with 90°-hole configuration was found to be strongly dependent on cooling flow rate and cooling plenum volume, whereas the absorption spectrum of cooling liners with 25°-holes were found to be strongly dependent on the cooling plenum volume, but less dependent on the cooling air flow rate. All cooling liner setups with perforations were capable of increased acoustic absorption over a broad band of frequencies compared to the case of non-perforated combustor walls. © 2010 by Johannes Schmidt.
Resumo:
The background to this review paper is research we have performed over recent years aimed at developing a simulation system capable of handling large scale, real world applications implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the use of a Level Set solid modeling geometry kernel within this parallel framework to enable automated design optimization without topological restrictions and on geometries of arbitrary complexity. Also described is another interesting application of Level Sets: their use in guiding the export of a body-conformal mesh from our basic cut-Cartesian background octree - mesh - this permits third party flow solvers to be deployed. As a practical demonstrations meshes of guaranteed quality are generated and flow-solved for a B747 in full landing configuration and an automated optimization is performed on a cooled turbine tip geometry. Copyright © 2009 by W.N.Dawes.
Resumo:
Large eddy simulation (LES) type studies are made of a realistic geometry coaxial nozzle with a pylon. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving Numerical LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier Stokes) model is used giving a hybrid NLES-RANS approach.The pylon is shown to influence the flow development, having a significant impact on peak turbulence levels and spreading rates. The results show that real geometry effects are influential and should be taken into account when moving towards real engine simulations. If their effects are ignored then, based on the studies here, key turbulence parameters will have significant error.
Resumo:
DNS of turbulent hydrogen-air premixed flame is conducted for freely propagating and V-flames, using complex chemical kinetics. The results are analysed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation process. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to predominantly align with the most extensive strain in the region of intense heat release.