167 resultados para Resonant photoemission


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercially available integrated compact fluorescent lamps (CFLs) use self-resonant ballasts on grounds of simplicity and cost. To understand how to improve ballast efficiency, it is necessary to quantify the losses. The losses occurring in these ballasts have been directly measured using a precision mini-calorimeter. In addition, a Pspice model has been used to simulate the performance of an 18 W integrated CFL. The lamp has been represented by a behavioural model and Jiles-Atherton equations were used to model the current transformer core. The total loss is in close agreement with measurements from the mini-calorimeter, confirming the accuracy of the model. The total loss was then disaggregated into component losses by simulation, showing that the output inductor is the primary source of loss, followed by the inverter switches. © 2011 The Institution of Engineering and Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we demonstrate laser emission from emulsion-based polymer dispersed liquid crystals. Such lasers can be easily formed on single substrates with no alignment layers. Remarkably, it is shown that there can exist two radically different laser emission profiles, namely, photonic band-edge lasing and non-resonant random lasing. The emission is controlled by simple changes in the emulsification procedure. Low mixing speeds generate larger droplets that favor photonic band edge lasing with the requisite helical alignment produced by film shrinkage. Higher mixing speeds generate small droplets, which facilitate random lasing by a non-resonant scattering feedback process. Lasing thresholds and linewidth data are presented showing the potential of controllable linewidth lasing sources. Sequential and stacked layers demonstrate the possibility of achieving complex, simultaneous multi-wavelength and "white-light" laser output from a wide variety of substrates including glass, metallic, paper and flexible plastic. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of high frequency acoustic wave devices requires thedevelopment of thin films of piezoelectric materials with improved morphologicaland electro-acoustical properties. In particular, the crystalline orientationof the films, surface morphology, film stress and electrical resistivity are keyissues for the piezoelectric response. In the work reported here, ZnO thinfilms were deposited at high rates (>50 nm/min) using a novel process knownas the High Target Utilisation Sputtering (HiTUS). The films deposited possessexcellent crystallographic orientation, high resistivity (>109ωm), and exhibit surface roughness and film stress one order of magnitudelower than films grown with standard magnetron sputtering. The electromechanicalcoupling coefficient of the films, kT, was precisely calculated byimplementing the resonant spectrum method, and was found to be at least 6%higher than any previously reported kT of magnetron sputtered filmsto the Authors' knowledge. The low film stress of the film is deemed as one ofthe most important factors responsible for the high k T valueobtained. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the earliest theoretical speculation, stimulated by the growth of semiconductor superlattices, focused on novel devices based on vertical transport through engineered band structures; Esaki and Tsu promised Bloch oscillators in narrow mini-band systems and Kazarinov and Suris contemplated electrically stimulated intersubband transitions as sources of infrared radiation. Nearly twenty years later these material systems have been perfected, characterized and understood and experiments are emerging that test some of these original concepts for novel submillimetre wave electronics. Here we describe recent experiments on intersubband emission in quantum wells stimulated by resonant tunnelling currents. A critical issue at this time is devising a way to achieve population inversion. Other experiments explore 'saturation' effects in narrow miniband transport. Thermal saturation may be viewed as a precursor to Bloch oscillation if the same effects can be induced with an applied electric field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped–clamped beam nanowire resonators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we demonstrate laser emission from emulsion-based polymer dispersed liquid crystals. Such lasers can be easily formed on single substrates with no alignment layers. Remarkably, it is shown that there can exist two radically different laser emission profiles, namely, photonic band-edge lasing and non-resonant random lasing. The emission is controlled by simple changes in the emulsification procedure. Low mixing speeds generate larger droplets that favor photonic band edge lasing with the requisite helical alignment produced by film shrinkage. Higher mixing speeds generate small droplets, which facilitate random lasing by a non-resonant scattering feedback process. Lasing thresholds and linewidth data are presented showing the potential of controllable linewidth lasing sources. Sequential and stacked layers demonstrate the possibility of achieving complex, simultaneous multi-wavelength and "white-light" laser output from a wide variety of substrates including glass, metallic, paper and flexible plastic. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a novel implementation of the static random access memory (SRAM), the tunneling SRAM (TSRAM) uses the negative differential resistance of tunnel diodes (TD’s) and potentially offers considerable improvements in both standby power dissipation and integration density compared to the conventional CMOS SRAM. TSRAM has not yet been realized with a useful bit capacity mainly because the level of uniformity required of the nanoscale TD’s has been demanding and difficult to achieve. In this letter, we propose a Monte Carlo approach for estimating the yield of TSRAM cells and show that by optimizing the cell’s external circuit parameters, we can relax the allowable tolerance of a key device parameter of a resonant-TD-(RTD) based cell by three times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO thin film bulk acoustic resonators (FBARs) with resonant frequency of ∼1.5 GHz have been fabricated to function as an odorant biosensor. Physical adsorption of an odorant binding protein (AaegOBP22 from Aedes aegypti) resulted in frequency down shift. N,N-diethyl-meta-toluamide (DEET) has been selected as a ligand to the odorant binding protein (OBP). Alternate exposure of the bare FBARs to nitrogen flow with and without DEET vapor did not cause any noticeable frequency change. However, frequency drop was detected when exposing the OBP loaded FBAR sensors to the nitrogen flow containing DEET vapor against nitrogen flow alone (control) and the extent of frequency shift was proportional to the amount of the protein immobilized on the FBAR surface, indicating a linear response to DEET binding. These findings demonstrate the potential of binding protein functionalized FBARs as odorant biosensors. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ammonia (NH 3) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH 3 plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the construction of a new class of micromachined displacement sensors that employ the phenomenon of vibration-mode localization for monitoring minute inertial displacements. It is demonstrated both theoretically and experimentally that the eigenstate-shifted output signal of such mode-localized displacement sensors may be as high as 1000 times greater than corresponding resonant-frequency variations that serve as the output in the more traditional vibratory resonant micromechanical displacement/motion sensors. The high parametric sensitivities attainable in such mode-localized displacement sensors, together with their inherent advantages of improved environmental robustness and electrical tunability, suggest an alternative approach in achieving improved sensitivity and stability in high-resolution displacement transduction. © 1992-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. © 2012 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the global flame dynamics of a model annular gas turbine combustor undergoing strong self-excited circumferential instabilities is presented. The combustor consisted of either 12, 15 or 18 turbulent premixed bluff-body flames arranged around an annulus of fixed circumference so that the effect of flame separation distance, S, on the global heat release dynamics could be investigated. Reducing S was found to produce both an increase in the resonant frequency and the limit-cycle amplitudes of pressure and heat release for the same equivalence ratio. The phase-averaged global heat release, obtained from high-speed OH- chemiluminescence imaging from above, showed that these changes are caused by large-scale modifications to the flame structure around the annulus. For the largest S studied (12 flame configuration) the azimuthal instability produced a helical-like global heat release structure for each flame. When S was decreased, large-scale merging or linking between adjacent flames occurred spanning approximately half of the annulus with the peak heat release concentrated at the outer annular wall. The circumferential nature of the instability was evident from both the pressure measurements and the phase-averaged OH- chemiluminescence showing the phase of the heat release on either side of the annulus to be ≈180°apart and spinning in the counter clockwise direction. Both spinning and standing modes were found but only spinning modes are considered in this paper. To the best of the authors knowledge, these are the first experiments to provide a phase-averaged picture of self-excited azimuthal instabilities in a laboratory-scale annular combustor relevant to gas turbines. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strongly enhanced light emission at wavelengths between 1.3 and 1.6 μm is reported at room temperature in silicon photonic crystal (PhC) nanocavities with optimized out-coupling efficiency. Sharp peaks corresponding to the resonant modes of PhC nanocavities dominate the broad sub-bandgap emission from optically active defects in the crystalline Si membrane. We measure a 300-fold enhancement of the emission from the PhC nanocavity due to a combination of far-field enhancement and the Purcell effect. The cavity enhanced emission has a very weak temperature dependence, namely less than a factor of 2 reduction between 10 K and room temperature, which makes this approach suitable for the realization of efficient light sources as well as providing a quick and easy tool for the broadband optical characterization of silicon-on-insulator nanostructures. © 2011 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the electrical properties of silicon-on-insulator (SOI) photonic crystals as a function of both doping level and air filling factor. The resistance trends can be clearly explained by the presence of a depletion region around the sidewalls of the holes that is caused by band pinning at the surface. To understand the trade-off between the carrier transport and the optical losses due to free electrons in the doped SOI, we also measured the resonant modes of L3 photonic crystal nanocavities and found that surprisingly high doping levels, up to 1018 / cm3, are acceptable for practical devices with Q factors as high as 4× 104. © 2011 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technological progress is determined, to a great extent, by developments in material science. Breakthroughs can happen when a new type of material or new combinations of known materials with different dimensionality and functionality are created. Multilayered structures, being planar or concentric, are now emerging as major players at the forefront of research. Raman spectroscopy is a well-established characterization technique for carbon nanomaterials and is being developed for layered materials. In this issue of ACS Nano, Hirschmann et al. investigate triple-wall carbon nanotubes via resonant Raman spectroscopy, showing how a wealth of information can be derived about these complex structures. The next challenge is to tackle hybrid heterostructures, consisting of different planar or concentric materials, arranged "on demand" to achieve targeted properties.