139 resultados para Optimal mirrleesian taxation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

POMDP algorithms have made significant progress in recent years by allowing practitioners to find good solutions to increasingly large problems. Most approaches (including point-based and policy iteration techniques) operate by refining a lower bound of the optimal value function. Several approaches (e.g., HSVI2, SARSOP, grid-based approaches and online forward search) also refine an upper bound. However, approximating the optimal value function by an upper bound is computationally expensive and therefore tightness is often sacrificed to improve efficiency (e.g., sawtooth approximation). In this paper, we describe a new approach to efficiently compute tighter bounds by i) conducting a prioritized breadth first search over the reachable beliefs, ii) propagating upper bound improvements with an augmented POMDP and iii) using exact linear programming (instead of the sawtooth approximation) for upper bound interpolation. As a result, we can represent the bounds more compactly and significantly reduce the gap between upper and lower bounds on several benchmark problems. Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 'optimal' or 'best' design process may be the shortest or cheapest process, or the one that leads to a particularly desirable product, or to a reliable and maintainable product, or to a manufacturable product, or some combination of all of these. It is likely to satisfy the aspirations of the organisation to invest an appropriate amount of resource in the development of a specific new market opportunity, set in the context of longer-term business goals. This paper describes the progress made in over ten years of research on process modelling undertaken at the Cambridge Engineering Design Centre to identify an 'optimal' design process with which to develop an 'adequate' product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deciding whether a set of objects are the same or different is a cornerstone of perception and cognition. Surprisingly, no principled quantitative model of sameness judgment exists. We tested whether human sameness judgment under sensory noise can be modeled as a form of probabilistically optimal inference. An optimal observer would compare the reliability-weighted variance of the sensory measurements with a set size-dependent criterion. We conducted two experiments, in which we varied set size and individual stimulus reliabilities. We found that the optimal-observer model accurately describes human behavior, outperforms plausible alternatives in a rigorous model comparison, and accounts for three key findings in the animal cognition literature. Our results provide a normative footing for the study of sameness judgment and indicate that the notion of perception as near-optimal inference extends to abstract relations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a technique for improving the region of attraction of a robust variable horizon model predictive controller. It considers a constrained discrete-time linear system acted upon by a bounded, but unknown time-varying state disturbance. Using constraint tightening for robustness, it is shown how the tightening policy, parameterised as direct feedback on the disturbance, can be optimised to increase the volume of an inner approximation to the controller's true region of attraction. Numerical examples demonstrate the benefits of the policy in increasing region of attraction volume and decreasing the maximum prediction horizon length. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with time-domain optimal control of active suspensions. The optimal control problem formulation has been generalised by incorporating both road disturbances (ride quality) and a representation of driver inputs (handling quality) into the optimal control formulation. A regular optimal control problem as well as a risk-sensitive exponential optimal control performance index is considered. Emphasis has been given to practical considerations including the issue of state estimation in the presence of load disturbances (driver inputs). © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problem: ℤ2 × S3 discrete symmetry and S1 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problems: ℤ × S3 discrete symmetry and 51 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. Copyright ©2007 Watam Press.