134 resultados para Off-grid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing pressure on lowering vehicle exhaust emissions to meet stringent California and Federal 1993/1994 TLEV emission standards of 0.125 gpm NMOG, 3.4 gpm CO and 0.4 gpm NOx and future ULEV emission standards of 0.04 gpm NMOG, 1.7 gpm CO and 0.2 gpm NOx has focused specific attention on the cold start characteristics of the vehicle's emission system, especially the catalytic converter. From test data it is evident that the major portion of the total HC and CO emissions occur within the first two minutes of the driving cycle while the catalyst is heating up to operating temperature. The use of an electrically heated catalyst (EHC) has been proposed to alleviate this problem but the cost and weight penalties are high and the durability has yet to be fully demonstrated (1)*. This paper describes a method of reducing the light-off time of the catalytic converter to less than 20 seconds by means of an afterburner. The system uses exhaust gases from the engine calibrated to run rich and additional air injected into the exhaust gas stream to form a combustible mixture. The key feature concerns the method of making this combustible mixture ignitable within 2 seconds from starting the engine when the exhaust gases arriving at the afterburner are cold and essentially non-reacting. © Copyright 1992 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their potential for significant fuel consumption savings, Counter-Rotating Open Rotors (CRORs) are currently being considered as an alternative to high-bypass turbofans. When CRORs are mounted on an aircraft, several 'installation effects' arise which are not present when the engine is operated in isolation. This paper investigates how flow features arising from one such effect - The angle-of-attack of the engine centre-line relative to the oncoming flow - can influence the design of CROR engines. Three-dimensional full-annulus unsteady CFD simulations are used to predict the time-varying flow field experienced by each rotor and emphasis is put on the interaction of the frontrotor wake and tip vortex with the rear-rotor. A parametric study is presented that quantifies the rotorrotor interaction as a function of the angle-of-attack. It is shown that angle-of-attack operation significantly changes the flow field and the unsteady lift on both rotors. In particular, a frequency analysis shows that the unsteady lift exhibits sidebands around the rotor-rotor interaction frequencies. Further, a non-linear increase in the total rear-rotor tip unsteadiness is observed for moderate and high angles-of-attack. The results presented in this paper demonstrate that common techniques used to mitigate CROR noise, such as modifying the rotor-rotor axial spacing and rear-rotor crop, can not be applied correctly unless angle-of-attack effects are taken into account. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of the drain voltage rise of the Lateral IGBT during inductive turn-off is studied in detail. Numerical simulations show that, if compared with the well known vertical IGBT, the Lateral IGBT presents a differences in the on-state stored charge and in the growth of the depleted region that result in a different drain voltage rise. In this paper a complete model for the voltage rise is devised through an accurate calculation of the equivalent output capacitance. The model is in excellent agreement with two-dimensional simulations. Further, the paper shows that previously proposed models, which targeted the vertical IGBT, are not adequate for the description of the turn-off voltage rise in the Lateral IGBT. © Springer Science + Business Media LLC 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force an IGBT to follow a pre-set switching trajectory. Previously, AVC was mainly used for controlling series-connected IGBTs in order to enable voltage balance between IGBTs. In this paper, the nonlinear IGBT turn-off transient is further discussed and the turnoff of a single IGBT under AVC is further optimised in order to meet the demand of Power Electronic Building Block (PEBB) applications. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter demonstrates for the first time the effect of the incomplete ionization (I.I.) of the transparent p-anode layer on the static and dynamic characteristics of the field-stop insulated gate bipolar transistors (FS IGBTs). This effect needs to be considered in FS IGBTs TCAD modeling to match accurately the device characteristics across a wide range of temperatures. The acceptor ionization energy (EA) governing the I.I. mechanism for the p-anode is extracted via matching the experimental turn-off waveforms and the static performance with Medici simulator. © 1980-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a fixed-grid finite element technique for fluid-structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b-spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision-stabilisation technique is used to ensure inf-sup stability. The beam equations are discretised with b-splines and the shell equations with subdivision basis functions, both leading to a rotation-free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet-Robin partitioning scheme, and the fluid equations are solved with a pressure-correction method. Auxiliary techniques employed for improving numerical robustness include the level-set based implicit representation of the structure interface on the fluid grid, a cut-cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. © 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a sociomaterial perspective on digital coordination. It extends Pickering’s mangle of practice by using a trichordal approach to temporal emergence. We provide new understanding as to how the nonhuman and human agencies involved in coordination are embedded in the past, present, and future. We draw on an in-depth field study conducted between 2006 and 2010 of the development, introduction, and use of a computing grid infrastructure by the CERN particle physics community. Three coordination tensions are identified at different temporal dimensions, namelyobtaining adequate transparency in the present, modeling a future infrastructure, and the historical disciplining of social and material inertias. We propose and develop the concept of digital coordination, and contribute a trichordal temporal approach to understanding the development and use of digital infrastructure as being orientated to the past and future while emerging in the present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discrete element model (DEM) combined with computational fluid dynamics (CFD) was developed to model particle and fluid behaviour in 3D cylindrical fluidized beds. Novel techniques were developed to (1) keep fluid cells, defined in cylindrical coordinates, at a constant volume in order to ensure the conditions for validity of the volume-averaged fluid equations were satisfied and (2) smoothly and accurately measure voidage in arbitrarily shaped fluid cells. The new technique for calculating voidage was more stable than traditional techniques, also examined in the paper, whilst remaining computationally-effective. The model was validated by quantitative comparison with experimental results from the magnetic resonance imaging of a fluidised bed analysed to give time-averaged particle velocities. Comparisons were also made between theoretical determinations of slug rise velocity in a tall bed. It was concluded that the DEM-CFD model is able to investigate aspects of the underlying physics of fluidisation not readily investigated by experiment. © 2014 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical high voltage devices fabricated on SOI substrates suffer from a backside coupling effect which could result in premature breakdown. This phenomenon becomes more prominent if the structure is an IGBT which features a p-type injector. To suppress the premature breakdown due to crowding of electro-potential lines within a confined SOI/buried oxide structure, the partial SOI (PSOI) technique is being introduced. This paper analyzes the off-state behavior of an n-type Superjunction (SJ) LIGBT fabricated on PSOI substrate. During the initial development stage the SJ LIGBT was found to have very high leakage. This was attributed to the back and side coupling effects. This paper discusses these effects and shows how this problem could be successfully addressed with minimal modifications of device layout. The off-state performance of the SJ LIGBT at different temperatures is assessed and a comparison to an equivalent LDMOSFET is given. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for off-wall boundary conditions for turbulent flow is investigated. The objective of such a model is to circumvent the need to resolve the buffer layer near the wall, by providing conditions in the logarithmic layer for the overlying flow. The model is based on the self-similarity of the flow at different heights in the logarithmic layer. It was first proposed by Mizuno and Jiménez (2013), imposing at the boundary plane a velocity field obtained on-the-fly from an overlying region. The key feature of the model was that the lengthscales of the field were rescaled to account for the self-similarity law. The model was successful at sustaining a turbulent logarithmic layer, but resulted in some disagreements in the flow statistics, compared to fully-resolved flows. These disagreements needed to be addressed for the model to be of practical application. In the present paper, a more refined, wavelength-dependent rescaling law is proposed, based on the wavelength-dependent dynamics in fully-resolved flows. Results for channel flow show that the new model eliminates the large artificial pressure fluctuations found in the previous one, and a better agreement is obtained in the bulk properties, the flow fluctuations, and their spectral distribution across the whole domain. © Published under licence by IOP Publishing Ltd.