150 resultados para Negative dimension integration
Resumo:
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.
Resumo:
In a typical experiment on decision making, one out of two possible stimuli is displayed and observers decide which one was presented. Recently, Stanford and colleagues (2010) introduced a new variant of this classical one-stimulus presentation paradigm to investigate the speed of decision making. They found evidence for "perceptual decision making in less than 30 ms". Here, we extended this one-stimulus compelled-response paradigm to a two-stimulus compelled-response paradigm in which a vernier was followed immediately by a second vernier with opposite offset direction. The two verniers and their offsets fuse. Only one vernier is perceived. When observers are asked to indicate the offset direction of the fused vernier, the offset of the second vernier dominates perception. Even for long vernier durations, the second vernier dominates decisions indicating that decision making can take substantial time. In accordance with previous studies, we suggest that our results are best explained with a two-stage model of decision making where a leaky evidence integration stage precedes a race-to-threshold process. © 2013 Rüter et al.
Resumo:
Innovation policies play an important role throughout the development process of emerging industries in China. Existing policy and industry studies view the emergence process as a black-box, and fail to understand the impacts of policy to the process along which it varies. This paper aims to develop a multi-dimensional roadmapping tool to better analyse the dynamics between policy and industrial growth for new industries in China. Through reviewing the emergence process of Chinese wind turbine industry, this paper elaborates how policy and other factors influence the emergence of this industry along this path. Further, this paper generalises some Chinese specifics for the policy-industry dynamics. As a practical output, this study proposes a roadmapping framework that generalises some patterns of policy-industry interactions for the emergence process of new industries in China. This paper will be of interest to policy makers, strategists, investors and industrial experts. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
A novel integration method for the production of cost-effective optoelectronic printed circuit boards (OE PCBs) is presented. The proposed integration method allows fabrication of OE PCBs with manufacturing processes common to the electronics industry while enabling direct attachment of electronic components onto the board with solder reflow processes as well as board assembly with automated pick-and-place tools. The OE PCB design is based on the use of polymer multimode waveguides, end-fired optical coupling schemes, and simple electro-optic connectors, eliminating the need for additional optical components in the optical layer, such as micro-mirrors and micro-lenses. A proof-of-concept low-cost optical transceiver produced with the proposed integration method is presented. This transceiver is fabricated on a low-cost FR4 substrate, comprises a polymer Y-splitter together with the electronic circuitry of the transmitter and receiver modules and achieves error-free 10-Gb/s bidirectional data transmission. Theoretical studies on the optical coupling efficiencies and alignment tolerances achieved with the employed end-fired coupling schemes are presented while experimental results on the optical transmission characteristics, frequency response, and data transmission performance of the integrated optical links are reported. The demonstrated optoelectronic unit can be used as a front-end optical network unit in short-reach datacommunication links. © 2011-2012 IEEE.
Resumo:
Vertically aligned carbon nanotube (CNT) 'forest' microstructures fabricated by chemical vapor deposition (CVD) using patterned catalyst films typically have a low CNT density per unit area. As a result, CNT forests have poor bulk properties and are too fragile for integration with microfabrication processing. We introduce a new self-directed capillary densification method where a liquid is controllably condensed onto and evaporated from the CNT forests. Compared to prior approaches, where the substrate with CNTs is immersed in a liquid, our condensation approach gives significantly more uniform structures and enables precise control of the CNT packing density. We present a set of design rules and parametric studies of CNT micropillar densification by self-directed capillary action, and show that self-directed capillary densification enhances Young's modulus and electrical conductivity of CNT micropillars by more than three orders of magnitude. Owing to the outstanding properties of CNTs, this scalable process will be useful for the integration of CNTs as a functional material in microfabricated devices for mechanical, electrical, thermal and biomedical applications. © 2011 IOP Publishing Ltd.
Resumo:
Numerical integration is a key component of many problems in scientific computing, statistical modelling, and machine learning. Bayesian Quadrature is a modelbased method for numerical integration which, relative to standard Monte Carlo methods, offers increased sample efficiency and a more robust estimate of the uncertainty in the estimated integral. We propose a novel Bayesian Quadrature approach for numerical integration when the integrand is non-negative, such as the case of computing the marginal likelihood, predictive distribution, or normalising constant of a probabilistic model. Our approach approximately marginalises the quadrature model's hyperparameters in closed form, and introduces an active learning scheme to optimally select function evaluations, as opposed to using Monte Carlo samples. We demonstrate our method on both a number of synthetic benchmarks and a real scientific problem from astronomy.