132 resultados para Lattice Statistics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the relationship between statistics anxiety, individual characteristics (e.g., trait anxiety and learning strategies), and academic performance. Students enrolled in a statistics course in psychology (N=147) filled in a questionnaire on statistics anxiety, trait anxiety, interest in statistics, mathematical selfconcept, learning strategies, and procrastination. Additionally, their performance in the examination was recorded. The structural equation model showed that statistics anxiety held a crucial role as the strongest direct predictor of performance. Students with higher statistics anxiety achieved less in the examination and showed higher procrastination scores. Statistics anxiety was related indirectly to spending less effort and time on learning. Trait anxiety was related positively to statistics anxiety and, counterintuitively, to academic performance. This result can be explained by the heterogeneity of the measure of trait anxiety. The part of trait anxiety that is unrelated to the specific part of statistics anxiety correlated positively with performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of random dynamic systems usually requires the definition of an ensemble of structures and the solution of the eigenproblem for each member of the ensemble. If the process is carried out using a conventional numerical approach, the computational cost becomes prohibitive for complex systems. In this work, an alternative numerical method is proposed. The results for the response statistics are compared with values obtained from a detailed stochastic FE analysis of plates. The proposed method seems to capture the statistical behaviour of the response with a reduced computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistically planar turbulent partially premixed flames for different initial intensities of decaying turbulence have been simulated for global equivalence ratios = 0.7 and 1.0 using three-dimensional, simplified chemistry-based direct numerical simulations (DNS). The simulation parameters are chosen such that the flames represent the thin reaction zones regime combustion. A random bimodal distribution of equivalence ratio is introduced in the unburned gas ahead of the flame to account for the mixture inhomogeneity. The results suggest that the probability density functions (PDFs) of the mixture fraction gradient magnitude |Δξ| (i.e., P(|Δξ|)) can be reasonably approximated using a log-normal distribution. However, this presumed PDF distribution captures only the qualitative nature of the PDF of the reaction progress variable gradient magnitude |Δc| (i.e., P(|Δc|)). It has been found that a bivariate log-normal distribution does not sufficiently capture the quantitative behavior of the joint PDF of |Δξ| and |Δc| (i.e., P(|Δξ|, |Δc|)), and the agreement with the DNS data has been found to be poor in certain regions of the flame brush, particularly toward the burned gas side of the flame brush. Moreover, the variables |Δξ| and |Δc| show appreciable correlation toward the burned gas side of the flame brush. These findings are corroborated further using a DNS data of a lifted jet flame to study the flame geometry dependence of these statistics. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A large proportion of students identify statistics courses as the most anxiety-inducing courses in their curriculum. Many students feel impaired by feelings of state anxiety in the examination and therefore probably show lower achievements. AIMS: The study investigates how statistics anxiety, attitudes (e.g., interest, mathematical self-concept) and trait anxiety, as a general disposition to anxiety, influence experiences of anxiety as well as achievement in an examination. SAMPLE: Participants were 284 undergraduate psychology students, 225 females and 59 males. METHODS: Two weeks prior to the examination, participants completed a demographic questionnaire and measures of the STARS, the STAI, self-concept in mathematics, and interest in statistics. At the beginning of the statistics examination, students assessed their present state anxiety by the KUSTA scale. After 25 min, all examination participants gave another assessment of their anxiety at that moment. Students' examination scores were recorded. Structural equation modelling techniques were used to test relationships between the variables in a multivariate context. RESULTS: Statistics anxiety was the only variable related to state anxiety in the examination. Via state anxiety experienced before and during the examination, statistics anxiety had a negative influence on achievement. However, statistics anxiety also had a direct positive influence on achievement. This result may be explained by students' motivational goals in the specific educational setting. CONCLUSIONS: The results provide insight into the relationship between students' attitudes, dispositions, experiences of anxiety in the examination, and academic achievement, and give recommendations to instructors on how to support students prior to and in the examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sandwich panel with a core made from solid pyramidal struts is a promising candidate for multifunctional application such as combined structural and heat-exchange function. This study explores the performance enhancement by making use of hollow struts, and examines the elevation in the plastic buckling strength by either strain hardening or case hardening. Finite element simulations are performed to quantify these enhancements. Also, the sensitivity of competing collapse modes to tube geometry and to the depth of case hardening is determined. A comparison with other lattice materials reveals that the pyramidal lattice made from case hardened steel tubes outperforms lattices made from solid struts of aluminium or titanium and has a comparable strength to a core made from carbon fibre reinforced polymers. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanics of failure for elastic-brittle lattice materials is reviewed. Closed-form expressions are summarized for fracture toughness as a function of relative density for a wide range of periodic lattices. A variety of theoretical and numerical approaches has been developed in the literature and in the main the predictions coincide for any given topology. However, there are discrepancies and the underlying reasons for these are highlighted. The role of imperfections at the cell wall level can be accounted for by Weibull analysis. Nevertheless, defects can also arise on the meso-scale in the form of misplaced joints, wavy cell walls and randomly distributed missing cell walls. These degrade the macroscopic fracture toughness of the lattice. © 2010 Springer Science+Business Media B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High strength steels can suffer from a loss of ductility when exposed to hydrogen, and this may lead to sudden failure. The hydrogen is either accommodated in the lattice or is trapped at defects, such as dislocations, grain boundaries and carbides. The challenge is to identify the effect of hydrogen located at different sites upon the drop in tensile strength of a high strength steel. For this purpose, literature data on the failure stress of notched and un-notched steel bars are re-analysed; the bars were tested over a wide range of strain rates and hydrogen concentrations. The local stress state at failure has been determined by the finite element (FE) method, and the concentration of both lattice and trapped hydrogen is predicted using Oriani's theory along with the stress-driven diffusion equation. The experimental data are rationalised in terms of a postulated failure locus of peak maximum principal stress versus lattice hydrogen concentration. This failure locus is treated as a unique material property for the given steel and heat treatment condition. We conclude that the presence of lattice hydrogen increases the susceptibility to hydrogen embrittlement whereas trapped hydrogen has only a negligible effect. It is also found that the observed failure strength of hydrogen charged un-notched bars is less than the peak local stress within the notched geometries. Weakest link statistics are used to account for this stressed volume effect. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress-strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance on visual working memory tasks decreases as more items need to be remembered. Over the past decade, a debate has unfolded between proponents of slot models and slotless models of this phenomenon (Ma, Husain, Bays (Nature Neuroscience 17, 347-356, 2014). Zhang and Luck (Nature 453, (7192), 233-235, 2008) and Anderson, Vogel, and Awh (Attention, Perception, Psychophys 74, (5), 891-910, 2011) noticed that as more items need to be remembered, "memory noise" seems to first increase and then reach a "stable plateau." They argued that three summary statistics characterizing this plateau are consistent with slot models, but not with slotless models. Here, we assess the validity of their methods. We generated synthetic data both from a leading slot model and from a recent slotless model and quantified model evidence using log Bayes factors. We found that the summary statistics provided at most 0.15 % of the expected model evidence in the raw data. In a model recovery analysis, a total of more than a million trials were required to achieve 99 % correct recovery when models were compared on the basis of summary statistics, whereas fewer than 1,000 trials were sufficient when raw data were used. Therefore, at realistic numbers of trials, plateau-related summary statistics are highly unreliable for model comparison. Applying the same analyses to subject data from Anderson et al. (Attention, Perception, Psychophys 74, (5), 891-910, 2011), we found that the evidence in the summary statistics was at most 0.12 % of the evidence in the raw data and far too weak to warrant any conclusions. The evidence in the raw data, in fact, strongly favored the slotless model. These findings call into question claims about working memory that are based on summary statistics.