125 resultados para Language representation
Resumo:
Copyright © 2014, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. This paper presents the beginnings of an automatic statistician, focusing on regression problems. Our system explores an open-ended space of statistical models to discover a good explanation of a data set, and then produces a detailed report with figures and natural- language text. Our approach treats unknown regression functions non- parametrically using Gaussian processes, which has two important consequences. First, Gaussian processes can model functions in terms of high-level properties (e.g. smoothness, trends, periodicity, changepoints). Taken together with the compositional structure of our language of models this allows us to automatically describe functions in simple terms. Second, the use of flexible nonparametric models and a rich language for composing them in an open-ended manner also results in state- of-the-art extrapolation performance evaluated over 13 real time series data sets from various domains.
Resumo:
We present the Unified Form Language (UFL), which is a domain-specific language for representing weak formulations of partial differential equations with a view to numerical approximation. Features of UFL include support for variational forms and functionals, automatic differentiation of forms and expressions, arbitrary function space hierarchies formultifield problems, general differential operators and flexible tensor algebra. With these features, UFL has been used to effortlessly express finite element methods for complex systems of partial differential equations in near-mathematical notation, resulting in compact, intuitive and readable programs. We present in this work the language and its construction. An implementation of UFL is freely available as an open-source software library. The library generates abstract syntax tree representations of variational problems, which are used by other software libraries to generate concrete low-level implementations. Some application examples are presented and libraries that support UFL are highlighted. © 2014 ACM.
Resumo:
A partially observable Markov decision process (POMDP) has been proposed as a dialog model that enables automatic optimization of the dialog policy and provides robustness to speech understanding errors. Various approximations allow such a model to be used for building real-world dialog systems. However, they require a large number of dialogs to train the dialog policy and hence they typically rely on the availability of a user simulator. They also require significant designer effort to hand-craft the policy representation. We investigate the use of Gaussian processes (GPs) in policy modeling to overcome these problems. We show that GP policy optimization can be implemented for a real world POMDP dialog manager, and in particular: 1) we examine different formulations of a GP policy to minimize variability in the learning process; 2) we find that the use of GP increases the learning rate by an order of magnitude thereby allowing learning by direct interaction with human users; and 3) we demonstrate that designer effort can be substantially reduced by basing the policy directly on the full belief space thereby avoiding ad hoc feature space modeling. Overall, the GP approach represents an important step forward towards fully automatic dialog policy optimization in real world systems. © 2013 IEEE.