223 resultados para LINE-SHAPE
Resumo:
This paper proposes a high current impedance matching method for narrowband power-line communication (NPLC) systems. The impedance of the power-line channel is time and location variant; therefore, coupling circuitry and the channel are not usually matched. This not only results in poor signal integrity at the receiving end, but also leads to a higher transmission power requirement to secure the communication process. To offset this negative effect, a high-current adaptive impedance circuit to enable impedance matching in power-line networks is reported. The approach taken is to match the channel impedance of N-PLC systems is based on the General Impedance Converter (GIC). In order to achieve high current a special coupler in which the inductive impedance can be altered by adjusting a microcontroller controlled digital resistor is demonstrated. It is shown that the coupler works well with heavy load current in power line networks. It works in both low and high transmitting current modes, a current as high as 760 mA has been obtained. Besides, compared with other adaptive impedance couplers, the advantages include higher matching resolution and a simple control interface. Experimental results are presented to demonstrate the operation of the coupler. © 2011 IEEE.
Resumo:
We address the problem of face recognition by matching image sets. Each set of face images is represented by a subspace (or linear manifold) and recognition is carried out by subspace-to-subspace matching. In this paper, 1) a new discriminative method that maximises orthogonality between subspaces is proposed. The method improves the discrimination power of the subspace angle based face recognition method by maximizing the angles between different classes. 2) We propose a method for on-line updating the discriminative subspaces as a mechanism for continuously improving recognition accuracy. 3) A further enhancement called locally orthogonal subspace method is presented to maximise the orthogonality between competing classes. Experiments using 700 face image sets have shown that the proposed method outperforms relevant prior art and effectively boosts its accuracy by online learning. It is shown that the method for online learning delivers the same solution as the batch computation at far lower computational cost and the locally orthogonal method exhibits improved accuracy. We also demonstrate the merit of the proposed face recognition method on portal scenarios of multiple biometric grand challenge.
Resumo:
We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum, while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic field does not, however, change the net vertical momentum of the blob, which always increases linearly with time.
Resumo:
Experimental data have demonstrated that mushroom-shaped fibrils adhere much better to smooth substrates than punch-shaped fibrils. We present a model that suggests that detachment processes for such fibrils are controlled by defects in the contact area that are confined to its outer edge. Stress analysis of the adhered fibril, carried out for both punch and mushroom shapes with and without friction, suggests that defects near the edge of the adhesion area are much more damaging to the pull-off strength in the case of the punch than for the mushroom. The simulations show that the punch has a higher driving force for extension of small edge defects compared with the mushroom adhesion. The ratio of the pull-off force for the mushroom to that of the punch can be predicted from these simulations to be much greater than 20 in the friction-free case, similar to the experimental value. In the case of sticking friction, a ratio of 14 can be deduced. Our analysis also offers a possible explanation for the evolution of asymmetric mushroom shapes (spatulae) in the adhesion organ of geckos.