162 resultados para King Motor Car Company
Resumo:
In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.
An investigation into the information exchange between a consultant and client company: a case study
Resumo:
This report deals with collaborations of engineering consultants and clients in the automobile industry.
In these relationships three main challenges have been identified which have to be addressed by the consultancies. Therefore, the research takes the viewpoint of the consulting side. The challenges are
(i) the appropriate project goal definition;
(ii) achieving client satisfaction; and
(iii) dealing with international clients.
An investigation of such a relationship carried out on a case study shows that improvements can be achieved through communication support. The ways to do that are proposed.
Reducing Motor Vehicle Greenhouse Gas Emissions in a Non-California State: A Case Study of Minnesota
Resumo:
Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.
Resumo:
The spinning off of Cambridge Semiconductor Ltd (Camsemi) from the High Voltage Microelectronics Lab at Cambridge University is discussed. The technology originated from Cambridge University and was subsequently developed and commercialized as PowerBrane by Camsemi. The paper also discusses the business model and the enabling financial factors that led to the formation of Camsemi as a fables IC company, including access to seed funding from University and the subsequent investments of venture capital in several rounds. © 2011 IEEE.
Resumo:
A permanent-magnet motor has been designed for an innovative axial-flow ventricular assist device (VAD), to be placed in the descending aorta, intended to offload the left ventricle and augment renal perfusion in patients with congestive heart failure (CHF). For this application, an intra-aortic impeller with a built-in permanent magnet rotor is driven by an extraaortic stator working in synchronism with the natural heart. To meet this need, a two-dimensional analytical model has been developed in the MATLAB environment to estimate machine parameters; finite element analysis (FEA) has been used to refine the results. A prototype blood pump equipped with an innovative motor designed from the procedure above has been tested in a mock loop representing the human circulatory system. The performance of VAD incorporating the motor is presented. © 2009 IEEE.