157 resultados para Hollow-cylindrical-joint honeycomb
Resumo:
The finite element method has been used to develop collapse mechanism maps for the shear response of sandwich panels with a stainless steel core comprising hollow struts. The core topology comprises either vertical tubes or inclined tubes in a pyramidal arrangement. The dependence of the elastic and plastic buckling modes upon core geometry is determined, and optimal geometric designs are obtained as a function of core density. For the hollow pyramidal core, strength depends primarily upon the relative density ρ̄ of the core with a weak dependence upon tube slenderness. At ρ̄ below about 3%, the tubes of the pyramidal core buckle plastically and the peak shear strength scales linearly with ρ̄. In contrast, at ρ̄ above 3%, the tubes do not buckle and a stable shear response is observed. The predictions of the current study are in excellent agreement with previous measurements on the shear strength of the hollow pyramidal core, and suggest that this core topology is attractive from the perspectives of both core strength and energy absorption. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
An experimental setup and a simple reconstruction method are presented to measure velocity fields inside slightly tapering cylindrical liquid jets traveling through still air. Particle image velocimetry algorithms are used to calculate velocity fields from high speed images of jets of transparent liquid containing seed particles. An inner central plane is illuminated by a laser sheet pointed at the center of the jet and visualized through the jet by a high speed camera. Optical distortions produced by the shape of the jet and the difference between the refractive index of the fluid and the surrounding air are corrected by using a ray tracing method. The effect of the jet speed on the velocity fields is investigated at four jet speeds. The relaxation rate for the velocity profile downstream of the nozzle exit is reasonably consistent with theoretical expectations for the low Reynolds numbers and the fluid used, although the velocity profiles are considerably flatter than expected. © 2012 American Society of Mechanical Engineers.
Resumo:
The dynamic response of end-clamped monolithic beams and sandwich beams of equal areal mass have been measured by loading the beams at mid-span with metal foam projectiles to simulate localised blast loading. The sandwich beams were made from carbon fibre laminate and comprised identical face sheets and a square-honeycomb core. The transient deflection of the beams was determined as a function of projectile momentum, and the measured response was compared with finite element simulations based upon a damage mechanics approach. A range of failure modes were observed in the sandwich beams including core fracture, plug-type shear failure of the core, debonding of the face sheets from the core and tensile tearing of the face sheets at the supports. In contrast, the monolithic beams failed by a combination of delamination of the plies and tensile failure at the supports. The finite element simulations of the beam response were accurate provided the carbon fibre properties were endowed with rate sensitivity of damage growth. The relative performance of monolithic and sandwich beams were quantified by the maximum transverse deflection at mid-span for a given projectile momentum. It was found that the sandwich beams outperformed both monolithic composite beams and steel sandwich beams with a square-honeycomb core. However, the composite beams failed catastrophically at a lower projectile impulse than the steel beams due to the lower ductility of the composite material. © 2011 Elsevier Ltd. All rights reserved.