151 resultados para Gradient bifurcation problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A case study of an aircraft engine manufacturer is used to analyze the effects of management levers on the lead time and design errors generated in an iteration-intensive concurrent engineering process. The levers considered are amount of design-space exploration iteration, degree of process concurrency, and timing of design reviews. Simulation is used to show how the ideal combination of these levers can vary with changes in design problem complexity, which can increase, for instance, when novel technology is incorporated in a design. Results confirm that it is important to consider multiple iteration-influencing factors and their interdependencies to understand concurrent processes, because the factors can interact with confounding effects. The article also demonstrates a new approach to derive a system dynamics model from a process task network. The new approach could be applied to analyze other concurrent engineering scenarios. © The Author(s) 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009, A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045-1057). The rate-dependent formulation is implemented numerically and the full-field indentation problem is analyzed via finite element calculations, for both ideally plastic behavior and dissipative hardening. The isotropic strain-gradient theory involves three material length scales, and the relative significance of these length scales upon the degree of size effect is assessed. Indentation maps are generated to summarize the sensitivity of indentation hardness to indent size, indenter geometry and material properties (such as yield strain and strain hardening index). The finite element model is also used to evaluate the pertinence of the Johnson cavity expansion model and of the Nix-Gao model, which have been extensively used to predict size effects in indentation hardness. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a review of important results concerning the Geometrical Theory of Diffraction and Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffraction of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane, including the secondary radiated waves. This leads to a precise representation of the diffraction coefficient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary radiated waves are an important step towards finding a formula giving the corner diffraction coefficient everywhere. © 2012 The authors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning rules emerge from a policy gradient approach depending on which features of the spike trains are assumed to influence the reward signals, i.e., depending on which neural code is in effect. We use the framework of Williams (1992) to derive learning rules for arbitrary neural codes. For illustration, we present policy-gradient rules for three different example codes - a spike count code, a spike timing code and the most general "full spike train" code - and test them on simple model problems. In addition to classical synaptic learning, we derive learning rules for intrinsic parameters that control the excitability of the neuron. The spike count learning rule has structural similarities with established Bienenstock-Cooper-Munro rules. If the distribution of the relevant spike train features belongs to the natural exponential family, the learning rules have a characteristic shape that raises interesting prediction problems.