125 resultados para Geometric Probability
Resumo:
DNA microarrays provide a huge amount of data and require therefore dimensionality reduction methods to extract meaningful biological information. Independent Component Analysis (ICA) was proposed by several authors as an interesting means. Unfortunately, experimental data are usually of poor quality- because of noise, outliers and lack of samples. Robustness to these hurdles will thus be a key feature for an ICA algorithm. This paper identifies a robust contrast function and proposes a new ICA algorithm. © 2007 IEEE.
Resumo:
Two main perspectives have been developed within the Multidisciplinary Design Optimization (MDO) literature for classifying and comparing MDO architectures: a numerical point of view and a formulation/data flow point of view. Although significant work has been done here, these perspectives have not provided much in the way of a priori information or predictive power about architecture performance. In this report, we outline a new perspective, called the geometric perspective, which we believe will be able to provide such predictive power. Using tools from differential geometry, we take several prominent architectures and describe mathematically how each constructs the space through which it moves. We then consider how the architecture moves through the space which it has constructed. Taken together, these investigations show how each architecture relates to the original feasible design manifold, how the architectures relate to each other, and how each architecture deals with the design coupling inherent to the original system. This in turn lays the groundwork for further theoretical comparisons between and analyses of MDO architectures and their behaviour using tools and techniques derived from differential geometry. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
A location- and scale-invariant predictor is constructed which exhibits good probability matching for extreme predictions outside the span of data drawn from a variety of (stationary) general distributions. It is constructed via the three-parameter {\mu, \sigma, \xi} Generalized Pareto Distribution (GPD). The predictor is designed to provide matching probability exactly for the GPD in both the extreme heavy-tailed limit and the extreme bounded-tail limit, whilst giving a good approximation to probability matching at all intermediate values of the tail parameter \xi. The predictor is valid even for small sample sizes N, even as small as N = 3. The main purpose of this paper is to present the somewhat lengthy derivations which draw heavily on the theory of hypergeometric functions, particularly the Lauricella functions. Whilst the construction is inspired by the Bayesian approach to the prediction problem, it considers the case of vague prior information about both parameters and model, and all derivations are undertaken using sampling theory.
Resumo:
Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.