139 resultados para Gabor wavelet filters
Resumo:
This paper introduces a method by which intuitive feature entities can be created from ILP (InterLevel Product) coefficients. The ILP transform is a pyramid of decimated complex-valued coefficients at multiple scales, derived from dual-tree complex wavelets, whose phases indicate the presence of different feature types (edges and ridges). We use an Expectation-Maximization algorithm to cluster large ILP coefficients that are spatially adjacent and similar in phase. We then demonstrate the relationship that these clusters possess with respect to observable image content, and conclude with a look at potential applications of these clusters, such as rotation- and scale-invariant object recognition. © 2005 IEEE.
Resumo:
Wavelength offset super Gaussian optical filters enable 7dB increases in optical power budget of 11.25Gb/s optical OFDM PON systems using directly modulated DFBs, considerably relax filter bandwidth requirement and improve performance robustness to bandwidth variation. © 2011 Optical Society of America.
Resumo:
The use of 0.02nm bandwidth optical bandpass filters with 0.01nm wavelength offsets from optical carrier wavelengths in the optical OFDM (OOFDM) transmitter improves optical power budgets by 7dB at a total channel BER of 1×10 -3 in directly modulated laser-based IMDD PON systems. ©2010 Optical Society of America.
Resumo:
FBAR devices with carbon nanotube (CNT) electrodes have been developed withthe aim of taking advantage of the low density and high acoustic impedance ofthe CNTs compared to other known materials. The influence of the CNTs on thefrequency response of the FBAR devices was studied by comparing two identicalsets of devices, one set comprised FBARs fabricated with chromium/gold bilayerelectrodes, and the second set comprised FBARs fabricated with CNT electrodes.It was found that the CNTs had a significant effect on attenuating travellingwaves at the surface of the FBARs membranes due to their high elastic stiffness.Finite element analysis of the devices fabricated was carried out using COMSOLMultiphysics, and the numerical results confirmed the experimental resultsobtained. © 2010 IEEE.
Resumo:
A novel method for modelling the statistics of 2D photographic images useful in image restoration is defined. The new method is based on the Dual Tree Complex Wavelet Transform (DT-CWT) but a phase rotation is applied to the coefficients to create complex coefficients whose phase is shift-invariant at multiscale edge and ridge features. This is in addition to the magnitude shift invariance achieved by the DT-CWT. The increased correlation between coefficients adjacent in space and scale provides an improved mechanism for signal estimation. © 2006 IEEE.
Resumo:
In this paper a novel visualisation method for diffusion tensor MRI datasets is introduced. This is based on the use of Complex Wavelets in order to produce "stripy" textures which depict the anisotropic component of the diffusion tensors. Grey-scale pixel intensity is used to show the isotropic component. This paper also discusses enhancements of the technique for 3D visualisation. © 2004 IEEE.
Resumo:
Statistical dependencies among wavelet coefficients are commonly represented by graphical models such as hidden Markov trees (HMTs). However, in linear inverse problems such as deconvolution, tomography, and compressed sensing, the presence of a sensing or observation matrix produces a linear mixing of the simple Markovian dependency structure. This leads to reconstruction problems that are non-convex optimizations. Past work has dealt with this issue by resorting to greedy or suboptimal iterative reconstruction methods. In this paper, we propose new modeling approaches based on group-sparsity penalties that leads to convex optimizations that can be solved exactly and efficiently. We show that the methods we develop perform significantly better in de-convolution and compressed sensing applications, while being as computationally efficient as standard coefficient-wise approaches such as lasso. © 2011 IEEE.
Resumo:
In this paper, a novel cortex-inspired feed-forward hierarchical object recognition system based on complex wavelets is proposed and tested. Complex wavelets contain three key properties for object representation: shift invariance, which enables the extraction of stable local features; good directional selectivity, which simplifies the determination of image orientations; and limited redundancy, which allows for efficient signal analysis using the multi-resolution decomposition offered by complex wavelets. In this paper, we propose a complete cortex-inspired object recognition system based on complex wavelets. We find that the implementation of the HMAX model for object recognition in [1, 2] is rather over-complete and includes too much redundant information and processing. We have optimized the structure of the model to make it more efficient. Specifically, we have used the Caltech 5 standard dataset to compare with Serre's model in [2] (which employs Gabor filter bands). Results demonstrate that the complex wavelet model achieves a speed improvement of about 4 times over the Serre model and gives comparable recognition performance. © 2011 IEEE.
Resumo:
An anomaly detection approach is considered for the mine hunting in sonar imagery problem. The authors exploit previous work that used dual-tree wavelets and fractal dimension to adaptively suppress sand ripples and a matched filter as an initial detector. Here, lacunarity inspired features are extracted from the remaining false positives, again using dual-tree wavelets. A one-class support vector machine is then used to learn a decision boundary, based only on these false positives. The approach exploits the large quantities of 'normal' natural background data available but avoids the difficult requirement of collecting examples of targets in order to train a classifier. © 2012 The Institution of Engineering and Technology.