151 resultados para FERRITIC STEEL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an inexpensive, facile and industry viable carbon nanofibre catalyst activation process achieved by exposing stainless steel mesh to an electrolyzed metal etchant. The surface evolution of the catalyst islands combines low-rate electroplating and substrate dissolution. The plasma enhanced chemical vapour deposited carbon nanofibres had aspect-ratios > 150 and demonstrated excellent height and crystallographic uniformity with localised coverage. The nanofibres were well-aligned with spacing consistent with the field emission nearest neighbour electrostatic shielding criteria, without the need of any post-growth processing. Nanofibre inclusion significantly reduced the emission threshold field from 4.5 V/μm (native mesh) to 2.5 V/μm and increased the field enhancement factor to approximately 7000. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Half of the world's annual production of steel is used in constructing buildings and infrastructure. Producing this steel causes significant amounts of carbon dioxide to be released into the atmosphere. Climate change experts recommend this amount be halved by 2050; however steel demand is predicted to have doubled by this date. As process efficiency improvements will not reach the required 75% reduction in emissions per unit steel output, new methods must be examined to deliver service using less steel production. To apply such methods successfully to construction, it must first be known where steel is used currently within the industry. This information is not available so a methodology is proposed to estimate it from known data. Results are presented for steel flows by product for ten construction sectors for both the UK and the world in 2006. An estimate for steel use within a 'typical' building is also published for the first time. Industrial buildings and utility infrastructure are identified as the largest end-uses of steel, while superstructure is confirmed as the main use of steel in a building. The results highlight discrepancies in previous steel estimates and life-cycle assessments, and will inform future research on lowering demand for steel, hence reducing carbon emissions. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellite 6® powders were deposited on carbon steel using Supersonic Laser Deposition. The microstructure and performance of the coatings were examined using SEM, optical microscopy, EDS, XRD, microhardness testing and pin-on-disc wear testing. The results showed that the microstructure and wear behaviour of the most successful SLD deposition conditions with N2 at a pressure of 30bar, a temperature of 450°C and a deposition power of 1.5kW were compared with that of optimised laser cladding. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel production is energy intensive so already has achieved impressive levels of energy efficiency. If the emissions associated with steel must be reduced in line with the requirements of the UK Climate Change Act, demand for new steel must be reduced. The strategies of 'material efficiency' aim to achieve such a reduction, while delivering the same final services. To meet the emissions targets set into UK law, UK consumption of steel must be reduced to 30 per cent of present levels by 2050. Previous work has revealed six strategies that could contribute to this target, and this paper presents an approximate analysis of the required transition. A macro-economic analysis of steel in the UK shows that while the steel industry is relatively small, the construction and manufacturing sectors are large, and it would be politically unacceptable to pursue options that lead to a major contraction in other sectors. Alternative business models are therefore required, and these are explored through four representative products--one for each final sector with particular emphasis given to options for reducing product weight, and extending product life. Preliminary evidence on the triggers that would lead to customers preferring these options is presented and organized in order to predict required policy measures. The estimated analysis of transitions explored in this paper is used to define target questions for future research in the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the face of increasing demand and limited emission reduction opportunities, the steel industry will have to look beyond its process emissions to bear its share of emission reduction targets. One option is to improve material efficiency - reducing the amount of metal required to meet services. In this context, the purpose of this paper is to explore why opportunities to improve material efficiency through upstream measures such as yield improvement and lightweighting might remain underexploited by industry. Established input-output techniques are applied to the GTAP 7 multi-regional input-output model to quantify the incentives for companies in key steel-using sectors (such as property developers and automotive companies) to seek opportunities to improve material efficiency in their upstream supply chains under different short-run carbon price scenarios. Because of the underlying assumptions, the incentives are interpreted as overestimates. The principal result of the paper is that these generous estimates of the incentives for material efficiency caused by a carbon price are offset by the disincentives to material efficiency caused by labour taxes. Reliance on a carbon price alone to deliver material efficiency would therefore be misguided and additional policy interventions to support material efficiency should be considered. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new model is presented which describes the growth of the duplex layers of Fe3O4 on mild steel in high temperature, deoxygenated, neutral or alkaline aqueous solutions. It is shown that the layers grow by the ingress of water along oxide micropores to the metal-oxide interface and by the rate-limiting outward diffusion of Fe ions along oxide grain boundaries. The new model accounts for the observed temperature-dependence and pH-dependence of the corrosion, the morphology of inner and outer layer crystallites, the segregation of alloying elements, and the location of hydrogen evolution. The model can also be generalized to other steels and alloys. © 1989.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the key features of a seafloor-riser interaction model. The soil is represented in terms of non-linear load-deflection (P- y) relationships, which are also able to account for soil stiffness degradation due to cyclic loading. The analytical framework considers the riser-seafloor interaction problem in terms of a pipe resting on a bed of springs, and requires the iterative solution of a fourth-order ordinary differential equation. A series of simulations is used to illustrate the capabilities of the model. Thanks to the non-linear soil springs with stiffness degradation it is possible to simulate the trench formation process and estimate moments in a riser. Copyright © 2008 by The International Society of Offshore and Polar Engineers (ISOPE).