222 resultados para Ellis Island Immigration Station (N.Y. and N.J.)--Aerial views.


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis of multiwalled carbon nanotubes (MWCNTs) encapsulated with Co/Pd magnetic and nonmagnetic multi-metal nanowires using Co and Pd thin-layers deposited on Si substrate by microwave plasma enhanced chemical vapor deposition using a bias-enhanced growth method. Detailed structural and compositional investigations of these metal nanowires inside MWCNTs were carried out by scanning electron microscopy and transmission electron microscopy to elucidate the growth mechanisms. Energy dispersive X-ray spectroscopy revealed that MWCNTs were encapsulated with Co and Pd nanowires, separately, at the tube top and the bottom of Co nanowire, respectively. The face-centered-cubic (fcc) structure of Co nanowires was confirmed by a selected area diffraction pattern. We proposed a fruitful description for the encapsulating mechanisms of both Co and Pd multi-metal nanowires. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We synthesize Co nanorod filled inside multi-walled CNTs (MWCNTs) by microwave plasma enhanced chemical vapor deposition (MPECVD) and utilize off-axis electron holography to observe the remanent states of the filled metal nanorod inside MWCNTs at room. The MWCNTs grew up to 100-110 nm in diameter and 1.5-1.7 μm in length. The typical bright-field transmission electron microscope (TEM) images revealed both Co/Pd multisegment nanorod and Co nanorod filled inside MWCNTs on the same substrate. We have also performed energy-dispersive X-ray spectrometer (EDS) measurements to characterize the composition of metal filled inside MWCNTs. Based on high-resolution TEM measurements, we observed the face-centered-cubic (fcc) Co filled inside MWCNT. The component of magnetic induction was then measured to be 1.2±0.1 T, which is lower than the expected saturation magnetization of fcc Co of 1.7 T. The partial oxidation of the ferromagnetic metal during the process and the magnetization direction may play an important role in the determination of the quality of the remanent states. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to review our recent results on the growth and optimization of carbon nanotubes (CNTs) and CNT/Zinc Oxide nanostructures and present and discuss their suitability for various applications such as cold cathode electron sources for use in x-ray sources and lighting. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents direct growth of horizontally aligned carbon nanotubes (CNTs) between two predefined various inter-spacing up to tens of microns of electrodes (pads) and its use as CNT field-effect transistors (CNT-FETs). The catalytic metals were prepared, consisting of iron (Fe), aluminum (Al) and platinum (Pt) triple layers, on the thermal silicon oxide substrate (Pt/Al/Fe/SiO2). Scanning electron microscopy measurements of CNT-FETs from the as-grown samples showed that over 80% of the nanotubes are grown across the catalytic electrodes. Moreover, the number of CNTs across the catalytic electrodes is roughly controllable by adjusting the growth condition. The Al, as the upper layer on Fe electrode, not only plays a role as a barrier to prevent vertical growth but also serves as a porous medium that helps in forming smaller nano-sized Fe particles which would be necessary for lateral growth of CNTs. Back-gate field effect transistors were demonstrated with the laterally aligned CNTs. The on/off ratios in all the measured devices are lower than 100 due to the drain leakage current. ©2010 IEEE.