130 resultados para Electric resistance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details of a lumped parameter thermal model for studying thermal aspects of the frame size 180 nested loop rotor BDFM at the University of Cambridge are presented. Predictions of the model are verified against measured end winding and rotor bar temperatures that were measured with the machine excited from a DC source. The model is used to assess the thermal coupling between the stator windings and rotor heating. The thermal coupling between the stator windings is assessed by studying the difference of the steady state temperatures of the two stator end windings for different excitations. The rotor heating is assessed by studying the temperatures of regions of interest for different excitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterized the electrical conductance of well-structured multi-walled carbon nanotubes (MWCNTs) which had post-treated by a rapid vacuum arc thermal annealing process and structure defects in these nanotubes are removed. We found that the after rapid vacuum arc annealing, the conductivity of well-structured MWCNTs can be improved by an order of magnitude. We also investigated the conductivity of MWCNTs bundle by the variation of temperatures. These results show that the conductance of annealed defect-free MWCNTs is sensitive to temperature imply the phonon scatting dominated the electron conductions. Compare to the well-structured MWCNTs, the defect scattering dominated the electron conduction in the as-grown control sample which has large amount of structure defects. A detail measurement of electron conduction from an individual well-structured MWCNT shows that the conductivity increases with temperatures which imply such MWCNTs exhibited semiconductor properties. We also produced back-gated field-effect transistors using these MWCNTs. It shows that the well-structured MWCNT can act as p-type semiconductor. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors are currently investigating the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in coils made from YBCO superconductors. In this paper, a 2D finite element model based on the H formulation is introduced. The model is then used to calculate the transport AC loss using both a bulk approximation and modeling the individual turns in a racetrack-shaped coil. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's superconducting permanent magnet synchronous motor design. The transport AC loss of a stator coil is measured using an electrical method based on inductive compensation using a variable mutual inductance. The simulated results are compared with the experimental results, verifying the validity of the model, and ways to improve the accuracy of the model are discussed. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.