135 resultados para EXCITON TRANSFER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This case study explores the interaction between domestic and foreign governmental policy on technology transfer with the goal of exploring the long-term impacts of technology transfer. Specifically, the impact of successive licensing of fighter aircraft manufacturing and design to Japan in the development of Japan's aircraft industry is reviewed. Results indicate Japan has built a domestic aircraft industry through sequential learning with foreign technology transfers from the United States, and design and production on domestic fighter aircraft. This process was facilitated by governmental policies in both Japan and the United States. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of free electron-hole pairs and excitons in GaAs-AlGaAs-GaAs core-shell-skin nanowires is investigated using femtosecond transient photoluminescence spectroscopy at 10 K. Following nonresonant excitation, a bimolecular interconversion of the initially generated electron-hole plasma into an exciton population is observed. This conducting-to-insulating transition appears to occur gradually over electron-hole charge pair densities of 2-4 × 10(16) cm(-3) . The smoothness of the Mott transition is attributed to the slow carrier-cooling during the bimolecular interconversion of free charge carriers into excitons and to the presence of chemical-potential fluctuations leading to inhomogeneous spectral characteristics. These results demonstrate that high-quality nanowires are model systems for investigating fundamental scientific effects in 1D heterostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless power transfer is experimentally demonstrated by transmission between an AC power transmitter and receiver, both realised using thin film technology. The transmitter and receiver thin film coils are chosen to be identical in order to promote resonant coupling. Planar spiral coils are used because of the ease of fabrication and to reduce the metal layer thickness. The energy transfer efficiency as a function of transfer distance is analysed along with a comparison between the theoretical and the experimental results. © 2012 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonequilibrium spin distributions in single GaAs/AlGaAs core-shell nanowires are excited using resonant polarized excitation at 10 K. At all excitation energies, we observe strong photoluminescence polarization due to suppressed radiative recombination of excitons with dipoles aligned perpendicular to the nanowire. Excitation resonances are observed at 1- or 2-LO phonon energies above the exciton ground states. Using rate equation modeling, we show that, at the lowest energies, strongly nonequilibrium spin distributions are present and we estimate their spin relaxation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CW and time-resolved photoluminescence measurements are used to investigate exciton recombination dynamics in GaAsAlGaAs heterostructure nanowires grown with a recently developed technique which minimizes twinning. A thin capping layer is deposited to eliminate the possibility of oxidation of the AlGaAs shell as a source of oxygen defects in the GaAs core. We observe exciton lifetimes of ∼1 ns, comparable to high quality two-dimensional double heterostructures. These GaAs nanowires allow one to observe state filling and many-body effects resulting from the increased carrier densities accessible with pulsed laser excitation. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging concrete infrastructure in developed economies and more recently constructed concrete infrastructure in the developing world are frequently found to be deficient in structural strength relative to current needs. This can be attributed to a variety of factors including deterioration, construction defects, accidental damage, changes in understanding and failure to design for future loading requirements. Strengthening existing concrete structures can be a cost and carbon effective alternative to replacement. A competitive option for the strengthening of concrete slab-on-beam structures that are deficient in shear capacity is the U-wrapping of the down-stand beam portion of the shear span with externally bonded FRP fabric. While guidance exists for the strengthening of reinforced concrete by U-wrapping, the interaction between internal steel reinforcement, concrete and external FRP in the presence of a dominant diagonal shear crack is not well understood. An approach adopted in previous work has been to explore this interaction through conventional push-off testing. In conventional push-off testing, unlike in a beam, the shear plane is parallel to the direction of loading and perpendicular to the principal fibre orientation. This paper presents a novel push-off test variation in which the shear plane is inclined at 45° to the direction of loading and the principal fibre orientation. A variety of reinforcement ratios, FRP thicknesses and FRP end conditions are modelled. The implications of inclined cracking on debonding of FRP are investigated. The suitability and relevance of inclined push-off tests for further work in this area is also assessed. © 2013, NetComposite Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer printing of 2 μm-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150 nm (±14 nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 × 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486 nm with a forward-directed optical output power up to 80 μW (355 mW/cm 2) when operated at a current density of 20 A/cm2. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H 25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication of a mechanically-flexible 16×16 array of thin-film, micron-size LEDs emitting at 480 nm. Devices were transfer-printed onto a mechanically-flexible ITO backplane using a modified, high-precision (placement accuracy ±25 nm) assembly system. © 2013 IEEE.