138 resultados para Drop tests.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jets from drop-on-demand inkjet print-heads consist of a main drop with a trailing filament, which either condenses into the main drop, or breaks up into satellite drops. Filament behaviour is quantitatively similar to that of larger, free symmetrical filamentscan be predicted from the aspect ratio and Ohnesorge number. Symmetrical filaments generated from inkjet print-heads show the same behaviour. A simple model, based on competition between the processes of axial shortening and radial necking, predicts the critical aspect ratio below which the jet condenses into a single drop. The success of this simple criterion supports the underlying physical model. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite structures exhibit many different failure mechanisms, but attempts to model composite failure frequently make a priori assumptions about the mechanism by which failure will occur. Wang et al. [1] conducted compressive tests on four configurations of composite specimen manufactured with out-of-plane waviness created by ply-drop defects. There were significantly different failures for each case. Detailed finite element models of these experiments were developed which include competing failure mechanisms. The model predictions correlate well with experimental results-both qualitatively (location of failure and shape of failed specimen) and quantitatively (failure load). The models are used to identify the progression of failure during the compressive tests, determine the critical failure mechanism for each configuration, and investigate the effect of cohesive parameters upon specimen strength. This modelling approach which includes multiple competing failure mechanisms can be applied to predict failure in situations where the failure mechanism is not known in advance. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In geotechnical engineering, soil classification is an essential component in the design process. Field methods such as the cone penetration test (CPT) can be used as less expensive and faster alternatives to sample retrieval and testing. Unfortunately, current soil classification charts based on CPT data and laboratory measurements are too generic, and may not provide an accurate prediction of the soil type. A probabilistic approach is proposed here to update and modify soil identification charts based on site-specific CPT data. The probability that a soil is correctly classified is also estimated. The updated identification chart can be used for a more accurate prediction of the classification of the soil, and can account for prior information available before conducting the tests, site-specific data, and measurement errors. As an illustration, the proposed approach is implemented using CPT data from the Treporti Test Site (TTS) near Venice (Italy) and the National Geotechnical Experimentation Sites (NGES) at Texas A&M University. The applicability of the site-specific chart for other sites in Venice Lagoon is assessed using data from the Malamocco test site, approximately 20 km from TTS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparison between theoretical predictions and experimental results from a pin-on-disc test rig exploring friction-induced vibration. The model is based on a linear stability analysis of two systems coupled by sliding contact at a single point. Predictions are compared with a large volume of measured squeal initiations that have been post-processed to extract growth rates and frequencies at the onset of squeal. Initial tests reveal the importance of including both finite contact stiffness and a velocity-dependent dynamic model for friction, giving predictions that accounted for nearly all major clusters of squeal initiations from 0 to 5 kHz. However, a large number of initiations occurred at disc mode frequencies that were not predicted with the same parameters. These frequencies proved remarkably difficult to destabilise, requiring an implausibly high coefficient of friction. An attempt has been made to estimate the dynamic friction behaviour directly from the squeal initiation data, revealing complex-valued frequency-dependent parameters for a new model of linearised dynamic friction. These new parameters readily destabilised the disc modes and provided a consistent model that could account for virtually all initiations from 0 to 15 kHz. The results suggest that instability thresholds for a wide range of squeal-type behaviour can be predicted, but they highlight the central importance of a correct understanding and accurate description of dynamic friction at the sliding interface. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measured drop speeds from a range of industrial drop-on-demand (DoD) ink-jet print head designs scale with the predictions of very simple physical models and results of numerical simulations. The main drop/jet speeds at a specified stand-off depend on fluid properties, nozzle exit diameter, and print head drive amplitude for fixed waveform timescales. Drop speeds from the Xaar, Spectra Dimatix, and MicroFab DoD print heads tested with (i) Newtonian, (ii) weakly elastic, and (iii) highly shear-thinning fluids all show a characteristic linear rise with drive voltage (setting) above an apparent threshold drive voltage. Jetting, simple modeling approaches, and numerical simulations of Newtonian fluids over the typical DoD printing range of surface tensions and viscosities were studied to determine how this threshold drive value and the slope of the characteristic linear rise depend on these fluid properties and nozzle exit area. The final speed is inversely proportional to the nozzle exit area, as expected from volume conservation. These results should assist specialist users in the development and optimization of DoD applications and print head design. For a given density, the drive threshold is determined primarily by viscosity, and the constant of proportionality k linking speed with drive above a drive threshold becomes independent of viscosity and surface tension for more viscous DoD fluid jetting. © 2013 Society for Imaging Science and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present reaction free energy calculations using the adaptive buffered force mixing quantum mechanics/molecular mechanics (bf-QM/MM) method. The bf-QM/MM method combines nonadaptive electrostatic embedding QM/MM calculations with extended and reduced QM regions to calculate accurate forces on all atoms, which can be used in free energy calculation methods that require only the forces and not the energy. We calculate the free energy profiles of two reactions in aqueous solution: the nucleophilic substitution reaction of methyl chloride with a chloride anion and the deprotonation reaction of the tyrosine side chain. We validate the bf-QM/MM method against a full QM simulation, and show that it correctly reproduces both geometrical properties and free energy profiles of the QM model, while the electrostatic embedding QM/MM method using a static QM region comprising only the solute is unable to do so. The bf-QM/MM method is not explicitly dependent on the details of the QM and MM methods, so long as it is possible to compute QM forces in a small region and MM forces in the rest of the system, as in a conventional QM/MM calculation. It is simple, with only a few parameters needed to control the QM calculation sizes, and allows (but does not require) a varying and adapting QM region which is necessary for simulating solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical models are widely used in the study of geotechnical earthquake engineering phenomena, and the comparison of modelling results to observations from field reconnaissance provides a transparent means of evaluating the design of our physical models. This paper compares centrifuge tests of pile groups in laterally spreading slopes with the response of piled bridge abutments in the 2011 Christchurch earthquake. We show that the model foundation's fixity conditions strongly affect the success with which the mechanism of response of the real abutments is replicated in the tests. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development is described of a computer-controlled bowing machine that can bow a string with a range of gestures that match or exceed the capabilities of a human violinist. Example measurements of string vibration under controlled bowing conditions are shown, including a Schelleng diagram and a set of Guettler diagrams, for the open D string of a cello. For some results a rosin-coated rod was used in place of a conventional bow, to provide quantitative data for comparison with theoretical predictions. The results show qualitative consistency with the predictions of Schelleng and Guettler, but details are revealed that go beyond the limitations of existing models. © S. Hirzel Verlag · EAA.