182 resultados para Computational topology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. It is theorized that volume-mass characteristics of these decelerators are superior to those of common supersonic/subsonic parachutes and after deployment they may suffer no instabilities at high Mach numbers. A high fidelity computational fluid-structure interaction model is employed to investigate the behavior of tension cone inflatable aeroshells at supersonic speeds up to Mach 2.0. The computational framework targets the large displacements regime encountered during the inflation of the decelerator using fast level set techniques to incorporate boundary conditions of the moving structure. The preliminary results indicate large but steady aeroshell displacement with rich dynamics, including buckling of the inflatable torus that maintains the decelerator open under normal operational conditions, owing to interactions with the turbulent wake. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of automated design optimization to real-world, complex geometry problems is a significant challenge - especially if the topology is not known a priori like in turbine internal cooling. The long term goal of our work is to focus on an end-to-end integration of the whole CFD Process, from solid model through meshing, solving and post-processing to enable this type of design optimization to become viable & practical. In recent papers we have reported the integration of a Level Set based geometry kernel with an octree-based cut- Cartesian mesh generator, RANS flow solver, post-processing & geometry editing all within a single piece of software - and all implemented in parallel with commodity PC clusters as the target. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh guided by the underpinning Level Set. This paper extends this work still further with a simple scoping study showing how the basic functionality can be scripted & automated and then used as the basis for automated optimization of a generic gas turbine cooling geometry. Copyright © 2008 by W.N.Dawes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: