152 resultados para Chemical asphyxia
Resumo:
In this paper, a synthetic mixture of ZrO2 and Fe 2O3 was prepared by coprecipitation for use in chemical looping and hydrogen production. Cycling experiments in a fluidized bed showed that a material composed of 30 mol % ZrO2 and 70 mol % Fe 2O3 was capable of producing hydrogen with a consistent yield of 90 mol % of the stoichiometric amount over 20 cycles of reduction and oxidation at 1123 K. Here, the iron oxide was subjected to cycles consisting of nearly 100% reduction to Fe followed by reoxidation (with steam or CO 2 and then air) to Fe2O3. There was no contamination by CO of the hydrogen produced, at a lower detection limit of 500 ppm, when the conversion of Fe3O4 to Fe was kept below 90 mol %. A preliminary investigation of the reaction kinetics confirmed that the ZrO2 support does not inhibit rates of reaction compared with those observed with iron oxide alone. © 2012 American Chemical Society.
Resumo:
Chemical looping combustion (CLC) uses a metal oxide (the oxygen carrier) to provide oxygen for the combustion of a fuel and gives an inherent separation of pure CO2 with minimal energy penalty. In solid-fuel CLC, volatile matter will interact with oxygen carriers. Here, the interaction between iron-based oxygen carriers and a volatile hydrocarbon (n-heptane) was investigated in both a laboratory-scale fluidised bed and a thermogravimetric analyser (TGA). Experiments were undertaken to characterise the thermal decomposition of the n-heptane occurring in the presence and in the absence of the oxygen carrier. In a bed of inert particles, carbon deposition increased with temperature and acetylene appeared as a possible precursor. For a bed of carrier consisting of pure Fe2O3, carbon deposition occurred once the Fe2O3 was fully reduced to Fe. When the Fe2O3 was doped with 10 mol % Al2O3 (Fe90Al), deposition started when the carrier was reduced to a mixture of Fe and FeAl2O4, the latter being very unreactive. Furthermore, when pure Fe2O3 was fully reduced to Fe, agglomeration of the fluidised bed occurred. However, Fe90Al did not give agglomeration even after extended reduction. The results suggest that Fe90Al is promising for the CLC of solid fuels. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
An improved technique for transferring large area graphene grown by chemical vapor deposition on copper is presented. It is based on mechanical separation of the graphene/copper by H2 bubbles during H2O electrolysis, which only takes a few tens of seconds while leaving the copper cathode intact. A semi-rigid plastic frame in combination with thin polymer layer span on graphene gives a convenient way of handling- and avoiding wrinkles and holes in graphene. Optical and electrical characterizations prove the graphene quality is better than that obtained by traditional wet etching transfer. This technique appears to be highly reproducible and cost efficient. © 2013 American Institute of Physics.
Resumo:
Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility.
Resumo:
Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO
Resumo:
Smooth and continuous ZnO films consisting of densely packed ZnO nanorods (NRs), which can be used for electronic device fabrication, were synthesized using a hydro-thermo-chemical solution deposition method. Such devices would have the novelty of high performance, benefiting from the inherited unique properties of the nanomaterials, and can be fabricated on these smooth films using a conventional, low cost planar process. Photoluminescence measurements showed that the NR films have much stronger shallow donor to valence band emissions than those from discrete ZnO NRs, and hence have the potential for the development of ZnO light emission diodes and lasers, etc. The NR films have been used to fabricate large area surface acoustic wave devices by conventional photolithography. These demonstrated two well-defined resonant peaks and their potential for large area device applications. The chemical solution deposition method is simple, reproducible, scalable and economic. These NR films are suitable for large scale production on cost-effective substrates and are promising for various fields such as sensing systems, renewable energy and optoelectronic applications.
Resumo:
Near-field measurements were performed at X-band frequencies for graphene on copper microstrip transmission lines. An improvement in radiation of 0.88 dB at 10.2 GHz is exhibited from the monolayer graphene antenna which has dc sheet resistivity of 985 Ω/sq. Emission characteristics were validated via ab initio simulations and compared to empirical findings of geometrically comparable copper patches. This study contributes to the current knowledge of the electronic properties of graphene. © 2013 AIP Publishing LLC.
Resumo:
In this article, we examine the phenomenon of single-crystal halide salt wire growth at the surface of porous materials. We report the use of a single-step casting technique with a supramolecular self-assembly gel matrix that upon drying leads to the growth of single-crystal halide (e.g., NaCl, KCl, and KI) nanowires with diameters ~130-200 nm. We demonstrate their formation using electron microscopy and electron-dispersive X-ray spectroscopy, showing that the supramolecular gel stabilizes the growth of these wires by facilitating a diffusion-driven base growth mechanism. Critically, we show that standard non-supramolecular gels are unable to facilitate nanowire growth. We further show that these nanowires can be grown by seeding, forming nanocrystal gardens. This study helps understand the possible prefunctionalization of membranes to stimulate ion-specific filters or salt efflorescence suppressors, while also providing a novel route to nanomaterial growth.
Resumo:
We have investigated the structural and optical properties of III-V nanowires grown by metalorganic chemical vapour deposition. Binary GaAs, InAs and InP nanowires, and ternary InGaAs and AlGaAs nanowires, have been fabricated and characterised. A variety of axial and radial heterostructures have also been fabricated, including GaAs/AlGaAs core-multishell and GaAs/InGaAs superlattice nanowires. GaAs/AlGaAs core-shell nanowires exhibit strong photoluminescence as the AlGaAs shell passivates the GaAs nanowire surface reducing the surface nonradiative recombination. © 2007 IEEE.
Resumo:
We have investigated the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures, fabricated by metalorganic chemical vapor deposition. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices. We have developed a two-temperature growth procedure to optimize nanowire morphology. An initial high temperature step promotes nucleation and epitaxial growth of straight (111)B-oriented nanowires. Lower temperatures are employed subsequently, to minimise radial growth. © 2007 IEEE.