148 resultados para Chaîne de Markov Monte Carlo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finitedimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets. Copyright 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finite-dimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximate Bayesian computation (ABC) has become a popular technique to facilitate Bayesian inference from complex models. In this article we present an ABC approximation designed to perform biased filtering for a Hidden Markov Model when the likelihood function is intractable. We use a sequential Monte Carlo (SMC) algorithm to both fit and sample from our ABC approximation of the target probability density. This approach is shown to, empirically, be more accurate w.r.t.~the original filter than competing methods. The theoretical bias of our method is investigated; it is shown that the bias goes to zero at the expense of increased computational effort. Our approach is illustrated on a constrained sequential lasso for portfolio allocation to 15 constituents of the FTSE 100 share index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many data are naturally modeled by an unobserved hierarchical structure. In this paper we propose a flexible nonparametric prior over unknown data hierarchies. The approach uses nested stick-breaking processes to allow for trees of unbounded width and depth, where data can live at any node and are infinitely exchangeable. One can view our model as providing infinite mixtures where the components have a dependency structure corresponding to an evolutionary diffusion down a tree. By using a stick-breaking approach, we can apply Markov chain Monte Carlo methods based on slice sampling to perform Bayesian inference and simulate from the posterior distribution on trees. We apply our method to hierarchical clustering of images and topic modeling of text data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We define a copula process which describes the dependencies between arbitrarily many random variables independently of their marginal distributions. As an example, we develop a stochastic volatility model, Gaussian Copula Process Volatility (GCPV), to predict the latent standard deviations of a sequence of random variables. To make predictions we use Bayesian inference, with the Laplace approximation, and with Markov chain Monte Carlo as an alternative. We find both methods comparable. We also find our model can outperform GARCH on simulated and financial data. And unlike GARCH, GCPV can easily handle missing data, incorporate covariates other than time, and model a rich class of covariance structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probability densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probabilitiy densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of Bayes' Theorem to signal processing provides a consistent framework for proceeding from prior knowledge to a posterior inference conditioned on both the prior knowledge and the observed signal data. The first part of the lecture will illustrate how the Bayesian methodology can be applied to a variety of signal processing problems. The second part of the lecture will introduce the concept of Markov Chain Monte-Carlo (MCMC) methods which is an effective approach to overcoming many of the analytical and computational problems inherent in statistical inference. Such techniques are at the centre of the rapidly developing area of Bayesian signal processing which, with the continual increase in available computational power, is likely to provide the underlying framework for most signal processing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present Poisson sum series representations for α-stable (αS) random variables and a-stable processes, in particular concentrating on continuous-time autoregressive (CAR) models driven by α-stable Lévy processes. Our representations aim to provide a conditionally Gaussian framework, which will allow parameter estimation using Rao-Blackwellised versions of state of the art Bayesian computational methods such as particle filters and Markov chain Monte Carlo (MCMC). To overcome the issues due to truncation of the series, novel residual approximations are developed. Simulations demonstrate the potential of these Poisson sum representations for inference in otherwise intractable α-stable models. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algorithms are presented for detection and tracking of multiple clusters of co-ordinated targets. Based on a Markov chain Monte Carlo sampling mechanization, the new algorithms maintain a discrete approximation of the filtering density of the clusters' state. The filters' tracking efficiency is enhanced by incorporating various sampling improvement strategies into the basic Metropolis-Hastings scheme. Thus, an evolutionary stage consisting of two primary steps is introduced: 1) producing a population of different chain realizations, and 2) exchanging genetic material between samples in this population. The performance of the resulting evolutionary filtering algorithms is demonstrated in two different settings. In the first, both group and target properties are estimated whereas in the second, which consists of a very large number of targets, only the clustering structure is maintained. © 2009 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the non-parametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive distributions. We derive both efficient Markov chain Monte Carlo and variational Bayes inference procedures for this model. We apply GPRN as a multiple output regression and multivariate volatility model, demonstrating substantially improved performance over eight popular multiple output (multi-task) Gaussian process models and three multivariate volatility models on benchmark datasets, including a 1000 dimensional gene expression dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.