175 resultados para Building Capability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In new product development, the ability to integrate different dimensions of sustainability at a value chain level is still a complex, problematic goal. As product-service approaches are increasingly enabling the introduction of more sustainable paths, this paper describes the authors' experience thus far when building insights into conditions for the implementation of integrated solutions in a process of co-development and testing in real life conditions, which are driven by a social need focusing on food for people with reduced access. Throughout this process, which brought together producers, consumers and other stakeholders to design and test industrialised, sustainable solutions, empirical evidence demonstrates feasibility and usefulness of the approach and insight into the conditions for implementing interactive, comprehensive multi-stakeholder processes in real life situations. In addition, results show that the delivery of innovative solutions enabled to offer social added value, economic profits and environmental improvements under specific experimental conditions. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models capturing the connectivity between different domains of a design, e.g. between components and functions, can provide a tool for tracing and analysing aspects of that design. In this paper, video experiments are used to explore the role of cross-domain modelling in building up information about a design. The experiments highlight that cross-domain modelling can be a useful tool to create and structure design information. Findings suggest that consideration of multiple domains encourages discussion during modelling, helps identify design aspects that might otherwise be overlooked, and can help promote consideration of alternative design options. Copyright © 2002-2012 The Design Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of Image Processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based shape recognition model is presented. This model was devised to enhance the recognition capabilities of our existing material based image retrieval model. The shape recognition model is based on clustering techniques, and specifically those related with material and object segmentation. The model detects the borders of each previously detected material depicted in the image, examines its linearity (length/width ratio) and detects its orientation (horizontal/vertical). The results emonstrate the suitability of this model for construction site image retrieval purposes and reveal the capability of existing clustering technologies to accurately identify the shape of a wealth of materials from construction site images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop models for large scale analysis of the stock. This research proposes a probabilistic, engineering-based, bottom-up model to address these issues. In a recent study we classified London's non-domestic buildings based on the service they provide, such as offices, retail premise, and schools, and proposed the creation of one probabilistic representational model per building type. This paper investigates techniques for the development of such models. The representational model is a statistical surrogate of a dynamic energy simulation (ES) model. We first identify the main parameters affecting energy consumption in a particular building sector/type by using sampling-based global sensitivity analysis methods, and then generate statistical surrogate models of the dynamic ES model within the dominant model parameters. Given a sample of actual energy consumption for that sector, we use the surrogate model to infer the distribution of model parameters by inverse analysis. The inferred distributions of input parameters are able to quantify the relative benefits of alternative energy saving measures on an entire building sector with requisite quantification of uncertainties. Secondary school buildings are used for illustrating the application of this probabilistic method. © 2012 Elsevier B.V. All rights reserved.