123 resultados para Building, Terra-cotta.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of settlement induced damage on buildings during the preliminary phase of tunnel excavation projects, is nowadays receiving greater attention. Analyses at different levels of detail are performed on the surface building in proximity to the tunnel, to evaluate the risk of structural damage and the need of mitigation measures. In this paper, the possibility to define a correlation between the main parameters that influence the structural response to settlement and the potential damage is investigated through numerical analysis. The adopted 3D finite element model allows to take into account important features that are neglected in more simplified approaches, like the soil-structure interaction, the nonlinear behaviour of the building, the three dimensional effect of the tunnelling induced settlement trough and the influence of openings in the structure. Aim of this approach is the development of an improved classification system taking into account the intrinsic vulnerability of the structure, which could have a relevant effect on the final damage assessment. Parametric analyses are performed, focusing on the effect of the orientation and the position of the structure with respect to the tunnel. The obtained results in terms of damage are compared with the Building Risk Assessment (BRA) procedure. This method was developed by Geodata Engineering (GDE) on the basis of empirical observations and building monitoring and applied during the construction of different metro lines in urban environment. The comparison shows a substantial agreement between the two procedures on the influence of the analysed parameters. The finite element analyses suggest a refinement of the BRA procedure for pure sagging conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground constructions in soft ground may lead to settlement damage to existing buildings. In The Netherlands the situation is particularly complex, because of the combination of soft soil, fragile pile foundations and brittle, unreinforced masonry façades. The tunnelling design process in urban areas requires a reliable risk damage assessment. In the engineering practice the current preliminary damage assessment is based on the limiting tensile strain method (LTSM). Essentially this is an uncoupled analysis, in which the building is modelled as an elastic beam subject to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. The soil-structure interaction is included only as a ratio between the soil and the building stiffness. In this paper, a coupled approach is evaluated. The soil-structure interaction in terms of normal and shear behaviour is represented by interface elements and a cracking model for masonry is included. This project aims to improve the existing damage classification system for masonry buildings subjected to tunnel-induced settlement, in order to evaluate the necessity of strengthening techniques or mitigation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excavation works in urban areas require a preliminary risk damage assessment. In historical cities, the prediction of building response to settlements is necessary to reduce the risk of damage of the architectural heritage. The current method used to predict the building damage due to ground deformations is the Limiting Tensile Strain Method (LTSM). This method is based on an uncoupled soil-structure analysis, in which the building is modelled as an elastic beam subject to imposed greenfield settlements and the induced tensile strains are compared with a limit value for the material. This approach neglects many factors which play an important rule in the response of the structure to tunneling induced settlements. In this paper, the possibility to apply a settlement risk assessment derived from the seismic vulnerability approach is considered. The parameters that influence the structural response to settlements can be defined through numerical coupled analyses which take into account the nonlinear behaviour of masonry and the soil-structure interaction.