148 resultados para Beams and girders


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operation of dynamical systems in harsh environments requires continuous monitoring. Internal sensors may be used to monitor the conditions in real time. A typical example is the sensor and electronic components used in space structures which, especially during launch, are subject to huge g force. The paper will present an experimental and theoretical study on a simplified model used to analyze the possible cause of high acceleration on the enclosed sensors and equipments due to impulsive loading. The model system consists of two beams coupled using compliant connections. An impulse hammer excites one beam, and vibrations are transmitted to the indirectly driven beam. A theoretical model is developed using a Rayleigh-Ritz approach and validated using experimental results in both the frequency and time domains. Monto Carlo simulation was done with random masses positioned on the indirectly driven beam to determine the worst-case conditions for maximum peak acceleration. Highest acceleration levels were found when mode matching in the two beams led to veering behavior in the coupled modes. The results suggest guidelines for the detailed design of internal components of a structure exposed to shock loading from its environment. [The authors thank Schlumberger Cambridge Research for financial support.].

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

External, prestressed carbon fiber reinforced polymer (CFRP) straps can be used to enhance the shear strength of existing reinforced concrete beams. In order to effectively design a strengthening system, a rational predictive theory is required. The current work investigates the ability of the modified compression field theory (MCFT) to predict the behavior of rectangular strap strengthened beams where the discrete CFRP strap forces are approximated as a uniform vertical stress. An unstrengthened control beam and two strengthened beams were tested to verify the predictions. The experimental results suggest that the MCFT could predict the general response of a strengthened beam with a uniform strap spacing < 0.9d. However, whereas the strengthened beams failed in shear, the MCFT predicted flexural failures. It is proposed that a different compression softening model or the inclusion of a crack width limit is required to reflect the onset of shear failures in the strengthened beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An assessment of the underwater blast resistance of sandwich beams with a prismatic Y-truss core is presented, utilizing three-dimensional finite element calculations. Results show a significant performance benefit for sandwich construction when compared to a monolithic plate of the same mass when the sandwich core combines high shear strength with low compressive strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the structural behavior of precracked reinforced concrete (RC) T-beams strengthened in shear with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. It reports on seven tests on unstrengthened and strengthened RC T-beams, identifying the influence of load history, beam depth, and percentage of longitudinal steel reinforcement on the structural behavior. The experimental results indicate that the contributions of the external CFRP sheets to the shear force capacity can be significant and depend on most of the investigated variables. This study also investigates the accuracy of the prediction of the fiber-reinforced polymer (FRP) contribution in ACI 440.2R-08, UK Concrete Society TR55, and fib Bulletin 14 design guidelines for shear strengthening. A comparison of predicted values with experimental results indicates that the guidelines can overestimate the shear contribution of the externally bonded FRP system. © 2012, American Concrete Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To meet targeted reductions in CO 2 emissions by 2050, demand for metal must be cut, for example through the use of lightweight technologies. However, the efficient production of weight optimized components often requires new, more flexible forming processes. In this paper, a novel hot rolling process is presented for forming I-beams with variable cross-section, which are lighter than prismatic alternatives. First, the new process concept is presented and described. A detailed computational and experimental analysis is then conducted into the capabilities of the process. Results show that the process is capable of producing defect free I-beams with variations in web depth of 30-50%. A full analysis of the process then indicates the likely failure modes, and identifies a safe operating window. Finally, the implications of these results for producing lightweight beams are discussed. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automated detection of structural elements (e.g., columns and beams) from visual data can be used to facilitate many construction and maintenance applications. The research in this area is under initial investigation. The existing methods solely rely on color and texture information, which makes them unable to identify each structural element if these elements connect each other and are made of the same material. The paper presents a novel method of automated concrete column detection from visual data. The method overcomes the limitation by combining columns’ boundary information with their color and texture cues. It starts from recognizing long vertical lines in an image/video frame through edge detection and Hough transform. The bounding rectangle for each pair of lines is then constructed. When the rectangle resembles the shape of a column and the color and texture contained in the pair of lines are matched with one of the concrete samples in knowledge base, a concrete column surface is assumed to be located. This way, one concrete column in images/videos is detected. The method was tested using real images/videos. The results are compared with the manual detection ones to indicate the method’s validity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use laser beams with radial and azimuthal polarization to optically trap carbon nanotubes. We measure force constants and trap parameters as a function of power showing improved axial trapping efficiency with respect to linearly polarized beams. The analysis of the thermal fluctuations highlights a significant change in the optical trapping potential when using cylindrical vector beams. This enables the use of polarization states to shape optical traps according to the particle geometry, as well as paving the way to nanoprobe-based photonic force microscopy with increased performance compared to a standard linearly polarized configuration. © 2012 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vibration response of piled foundations due to ground-borne vibration produced by an underground railway is a largely-neglected area in the field of structural dynamics. However, this continues to be an important aspect of research as it is expected that the presence of piled foundations can have a significant influence on the propagation and transmission of the wavefield produced by the underground railway. This paper presents a comparison of two methods that can be employed in calculating the vibration response of a piled foundation: an efficient semi-analytical model, and a Boundary Element model. The semi-analytical model uses a column or an Euler beam to model the pile, and the soil is modelled as a linear, elastic continuum that has the geometry of a thick-walled cylinder with an infinite outer radius and an inner radius equal to the radius of the pile. The boundary element model uses a constant-element BEM formulation for the halfspace, and a rectangular discretisation of the circular pile-soil interface. The piles are modelled as Timoshenko beams. Pile-soil-pile interactions are inherently accounted for in the BEM equations, whereas in the semi-analytical model these are quantified using the superposition of interaction factors. Both models use the method of joining subsystems to incorporate the incident wavefield generated by the underground railway into the pile model. Results are computed for a single pile subject to an inertial loading, pile-soil-pile interactions, and a pile group subjected to excitation from an underground railway. The two models are compared in terms of accuracy, computation time, versatility and applicability, and guidelines for future vibration prediction models involving piled foundations are proposed.