131 resultados para BAND


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique using spectrum-shaping codes to create nulls in the baseband spectrum of an Ethernet signal, so that several RF signals can be inserted in-band, is demonstrated by simultaneous transmission of 10GbE and WCDMA signals. © 2013 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.5mA/W for operation wavelength of 1.55µm corresponding to an internal quantum efficiency of 1%, about two orders of magnitude higher than our previously demonstrated results [22]. We attribute this improved detection efficiency to the presence of surface roughness at the boundary between the materials forming the Schottky contact. The combination of enhanced quantum efficiency together with a simple fabrication process provides a promising platform for the realization of all silicon photodetectors and their integration with other nanophotonic and nanoplasmonic structures towards the construction of monolithic silicon opto-electronic circuitry on-chip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene grown by Chemical Vapor Deposition (CVD) on nickel subsrate is oxidized by means of oxygen plasma and UV/Ozone treatments to introduce bandgap opening in graphene. The degree of band gap opening is proportional to the degree of oxidation on the graphene. This result is analyzed and confirmed by Scanning Tunnelling Microscopy/Spectroscopy and Raman spectroscopy measurements. Compared to conventional wet-oxidation methods, oxygen plasma and UV/Ozone treatments do not require harsh chemicals to perform, allow faster oxidation rates, and enable site-specific oxidation. These features make oxygen plasma and UV/Ozone treatments ideal candidates to be implemented in high-throughput fabrication of graphene-based microelectronics. © 2011 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the first mode-multiplexed system over 19-cell hollow-core photonic band gap fibre, at 2×20Gbps using the LP0,1 and LP2,1-like modes. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This tunable holographic sensor offers interrogation and a reporting transducer as well as an analyte-responsive hydrogel, rendering it label-free and reusable. A single 6 ns laser pulse is used to fabricate holographic sensors consisting of silver nanoparticles arranged periodically within a polymer film. The tunability of the sensor is demonstrated through pH sensing of artificial urine and validated through computational modeling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the first mode-multiplexed system over 19-cell hollow-core photonic band gap fibre, at 2×20Gbps using the LP0,1 and LP2,1-like modes. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates on chip sub bandgap detection of light at 1550 nm wavelength using the configuration of interleaved PN junctions along a silicon waveguide. The device operates under reverse bias in a nearly fully depleted mode, thus minimizing the free carrier plasma losses and significantly increases the detection volume at the same time. Furthermore, substantial enhancement in responsivity is observed by the transition from reverse bias to avalanche breakdown regime. The observed high responsivity of up to 7.2 mA/W at 3 V is attributed to defect assisted photogeneration, where the defects are related to the surface and the bulk of the waveguide. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate automatic operation of a cooler-less tunable-laser based WDM-PON system. Using a pilot-tone based overhead channel and centralized wavelength locking scheme, 1 Gb/s and 10 Gb/s data transmission is demonstrated in a multi-user set-up. © 2013 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polarization dependence of the double resonant Raman scattering (2D) band in bilayer graphene (BLG) is studied as a function of the excitation laser energy. It has been known that the complex shape of the 2D band of BLG can be decomposed into four Lorentzian peaks with different Raman frequency shifts attributable to four individual scattering paths in the energy-momentum space. From our polarization dependence study, however, we reveal that each of the four different peaks is actually doubly degenerate in its scattering channels, i.e., two different scattering paths with similar Raman frequency shifts for each peak. We find theoretically that one of these two paths, ignored for a long time, has a small contribution to their scattering intensities but are critical in understanding their polarization dependences. Because of this, the maximum-to-minimum intensity ratios of the four peaks show a strong dependence on the excitation energy, unlike the case of single-layer graphene (SLG). Our findings thus reveal another interesting aspect of electron-phonon interactions in graphitic systems. © 2014 Elsevier Ltd. All rights reserved.