185 resultados para Areal density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes two methods to improve the modelling of thin film transistors (TFTs). The first involves integrating Poissons equation numerically, given a density of trap states and other relevant material parameters including a constant mobility. Theresult is conductance as a numerical function of gate voltage. The second method recognizes that the data for areal conductance found by numerical integration, may easily be found by measurement without making assumptions about the density of trap states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the variation of the integrated density of states with conduction activation energy in hydrogenated amorphous silicon thin film transistors. Results are given for two different gate insulator layers, PECVD silicon oxide and thermally grown silicon dioxide. The different gate insulators produce transistors with very different initial transfer characteristics, but the variation of integrated density of states with conduction activation energy is shown to be similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High quality large grain high Tc superconducting ceramics offer enormous potential as 'permanent' magnets and in magnetic screening applications at 77K. This requires sample dimensions -cm with uniform high critical current densities of the order 105 A/cm2 in applied magnetic fields of IT. We report a study of the magnetic characterisation of a typical large YBa2Cu3O7-δ grain, prepared by seeded peritectic solidification, and correlate the magnetically determined critical current density, Jc, with microstuctural features from different regions of the bulk sample. From this data we extract the temperature, field and positional dependence of the critical current density of the samples and the irreversibility line. We find that whilst the bulk sample exhibits a good Jc of order 104 A/cm2 (77K, 1T), the local Jc is strongly correlated with the sample microstructure towards the edge of the sample and more severely at the centre of the sample by the presence of SmBa2Cu3O7-δ seed crystal. © 1997 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of graphite which is easy to comprehend and simple to implement for the simulation of scanning tunneling microscopy (STM) images is described. This model simulates the atomic density of graphite layers, which in turn correlates with the local density of states. The mechanism and construction of such a model is explained with all the necessary details which have not been explicitly reported before. This model is applied to the investigation of rippling fringes which have been experimentally observed on a superlattice, and it is found that the rippling fringes are not related to the superlattice itself. A superlattice with abnormal topmost layers interaction is simulated, and the result affirms the validity of the moiré rotation pattern assumption. The "odd-even" transition along the atomic rows of a superlattice is simulated, and the simulation result shows that when there is more than one rotated layer at the top, the "odd-even" transition will not be manifest. ©2005 The Japan Society of Applied Physics.