138 resultados para Anti-vehicle mine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces Periodically Controlled Hybrid Automata (PCHA) for describing a class of hybrid control systems. In a PCHA, control actions occur roughly periodically while internal and input actions may occur in the interim changing the discrete-state or the setpoint. Based on periodicity and subtangential conditions, a new sufficient condition for verifying invariance of PCHAs is presented. This technique is used in verifying safety of the planner-controller subsystem of an autonomous ground vehicle, and in deriving geometric properties of planner generated paths that can be followed safely by the controller under environmental uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Work presented in this paper studies the potential of employing inerters -a novel mechanical device used successfully in racing cars- in active suspension configurations with the aim to enhance railway vehicle system performance. The particular element of research in this paper concerns railway wheelset lateral stability control. Controlled torques are applied to the wheelsets using the concept of absolute stiffness. The effects of a reduced set of arbitrary passive structures using springs, dampers and inerters integrated to the active solution are discussed. A multi-objective optimisation problem is defined for tuning the parameters of the proposed configurations. Finally, time domain simulations are assessed for the railway vehicle while negotiating a curved track. A simplification of the design problem for stability is attained with the integration of inerters to the active solutions. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3ms and orifice diameters around 8mm provide the best performance. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with time-domain optimal control of active suspensions. The optimal control problem formulation has been generalised by incorporating both road disturbances (ride quality) and a representation of driver inputs (handling quality) into the optimal control formulation. A regular optimal control problem as well as a risk-sensitive exponential optimal control performance index is considered. Emphasis has been given to practical considerations including the issue of state estimation in the presence of load disturbances (driver inputs). © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into the potential for reducing road damage by optimising the design of heavy vehicle suspensions is described. In the first part of the paper two simple mathematical models are used to study the optimisation of conventional passive suspensions. Simple modifications are made to the steel spring suspension of a tandem axle trailer and it is found experimentally that RMS dynamic tyre forces can be reduced by 15% and theoretical road damage by 5.2%. A mathematical model of an air-sprung articulated vehicle is validated, and its suspension is optimised according to the simple models. This vehicle generates about 9% less damage than the leaf-sprung vehicle in the unmodified state and it is predicted that, for the operating conditions examined, the road damage caused by this vehicle can be reduced by a further 5.4%. Finally, it is shown experimentally that computer-controlled semi-active dampers have the potential to reduce road damage by a further 5-6%, compared to an air suspension with optimum passive damping. © Copyright 1994 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Customer feedback is normally fed into product design and engineering via quality surveys and therefore mainly comprises negative comments: complaints about things gone wrong. Whilst eradication of such problems will result in a feeling of satisfaction in existing customers, it will not instil the sense of delight required to attract conquest buyers. CUPID's aim is to conceive and evaluate ideas to stimulate product desirability through the provision of delightful features and execution. By definition, surprise and delight features cannot be foreseen, so we have to understand sensory appeal and, therefore, the "hidden" voice of the customer. Copyright © 2002 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 100 suppliers have now taken part in an initiative built to improve joint design and development performance of tier one suppliers and one vehicle manufacturer. Significant targets were set - 30 % cost down and 30% faster design time with 40% less development budget - and achieved An analysis of the initiative was used to determine the critical success factors. These include significant detail findings in the areas of performance measurement and alignment of development processes. Equal attention is given to understanding how co-development can be implemented and the paper will present findings related to objectivity, perception of partners and partnerships. Copyright © 2002 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy goods vehicles exhibit poor braking performance in emergency situations when compared to other vehicles. Part of the problem is caused by sluggish pneumatic brake actuators, which limit the control bandwidth of their antilock braking systems. In addition, heuristic control algorithms are used that do not achieve the maximum braking force throughout the stop. In this article, a novel braking system is introduced for pneumatically braked heavy goods vehicles. The conventional brake actuators are improved by placing high-bandwidth, binary-actuated valves directly on the brake chambers. A made-for-purpose valve is described. It achieves a switching delay of 3-4 ms in tests, which is an order of magnitude faster than solenoids in conventional anti-lock braking systems. The heuristic braking control algorithms are replaced with a wheel slip regulator based on sliding mode control. The combined actuator and slip controller are shown to reduce stopping distances on smooth and rough, high friction (μ = 0.9) surfaces by 10% and 27% respectively in hardware-in-the-loop tests compared with conventional ABS. On smooth and rough, low friction (μ = 0.2) surfaces, stopping distances are reduced by 23% and 25%, respectively. Moreover, the overall air reservoir size required on a heavy goods vehicle is governed by its air usage during an anti-lock braking stop on a low friction, smooth surface. The 37% reduction in air usage observed in hardware-in-the-loop tests on this surface therefore represents the potential reduction in reservoir size that could be achieved by the new system. © 2012 IMechE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the fundamental trade-offs involved in designing energy-regenerative suspensions, in particular, focusing on efficiency of power extraction and its effect on vehicle dynamics and control. It is shown that typical regenerative devices making use of linear-to-rotational elements can be modelled as a parallel arrangement of an inerter and a dissipative admittance. Taking account of typical adjustable parameters of the generator, it is shown, for a given suspension damping coefficient, that the power efficiency ratio scales with inertance. For a typical passenger vehicle, it is shown that there is a feasible compromise, namely that good efficiency is achievable with an inertance value that is not detrimental to vehicle performance. A prototype is designed and tested with a resistive termination and experimental results show good agreement between ideal and experimental admittances. The possibility to use dynamic (rather than purely resistive) loads to improve vehicle control without limiting the energy recovery is discussed. © 2013 Copyright Taylor and Francis Group, LLC.