112 resultados para vertical inversion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel vertically-coupled active-passive integration architecture that provides an order of magnitude reduction in coupling coefficient variation between misaligned waveguides when compared with a conventional vertically-coupled structure. © 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel vertically-coupled active-passive integration architecture that provides an order of magnitude reduction in coupling coefficient variation between misaligned waveguides when compared with a conventional vertically-coupled structure. © 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel vertically-coupled active-passive integration architecture that provides an order of magnitude reduction in coupling coefficient variation between misaligned waveguides when compared with a conventional vertically-coupled structure. © 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of free vibration in elastic structure can lead to energy-efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, the goals of this paper are to propose a design strategy of hopping robot based on elastic curved beams and actuated rotating masses and to identify the minimalistic model that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three 1-D models are examined that contain different configurations of simple spring-damper-mass components. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the self-stability of hopping motion under disturbances is investigated, and design and control parameters are analyzed for the energy-efficient hopping. In addition, further analyses show that this robot can achieve the energy-efficient hopping with the variation in payload, and the source of energy dissipation of the robot hopping is investigated. © 1982-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of free vibration in elastic structure can lead to energy efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, this paper explores three minimalistic models of free vibration that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three one-dimensional models are examined that contain different configurations of simple spring-damper-mass components. The self-stability of these models are also investigated in simulation. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the control parameters are analyzed for the energy efficient hopping. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite many approaches proposed in the past, robotic climbing in a complex vertical environment is still a big challenge. We present here an alternative climbing technology that is based on thermoplastic adhesive (TPA) bonds. The approach has a great advantage because of its large payload capacity and viability to a wide range of flat surfaces and complex vertical terrains. The large payload capacity comes from a physical process of thermal bonding, while the wide applicability benefits from rheological properties of TPAs at higher temperatures and intermolecular forces between TPAs and adherends when being cooled down. A particular type of TPA has been used in combination with two robotic platforms, featuring different foot designs, including heating/cooling methods and construction of footpads. Various experiments have been conducted to quantitatively assess different aspects of the approach. Results show that an exceptionally high ratio of 500% between dynamic payloads and body mass can be achieved for stable and repeatable vertical climbing on flat surfaces at a low speed. Assessments on four types of typical complex vertical terrains with a measure, i.e., terrain shape index ranging from -0.114 to 0.167, return a universal success rate of 80%-100%. © 2004-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical climbing on a variety of flat surfaces with a single robot has been previously demonstrated using vacuum suction, electrostatic adhesion, and biologically inspired approaches, etc. These methods generally have a low attachment strength, and it is not clear whether they can provide satisfactory attachment on vertical terrains with richer 3D features. Recent development of a climbing technology based on hot melt adhesives (HMAs) has shown its advantage with a high attachment strength through thermal bonding and viability to any solid surfaces. However, its feasibility for vertical climbing has only been proven on flat surfaces and with external energy supplies. This paper provides quantitative measurements for vertical climbing performance on five types of surfaces and terrains with a self-contained robot exploiting HMAs. We show that robust vertical climbing on multiple terrains can be achieved with reliable high-strength attachment. © 2012 IEEE.