121 resultados para ultrafast physics
Resumo:
This paper defines flipped learning and then examines its practical implementation in AS and A2 level physics classes, that is, classes for 16-18 year olds. The effect of this teaching style on student learning behaviour and its impact on test results are evaluated. The paper recounts the difficulties of implementing it and evaluates student preferences. It concludes with comments about this teaching style's appropriateness for various groups of students and identifies those for whom it is not suitable. A list of useful websites is included. © 2013 IOP Publishing Ltd.
Resumo:
We report a versatile and cost-effective way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between SLG and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to$\sim$0. We use this to mode-lock a VECSEL from 935 to 981nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors, dielectric coatings on gain materials. Conversely, it can also be used to increase absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.
Resumo:
We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the nonequilibrium electron gas decay at early times. © OSA 2012.
Resumo:
We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.
Resumo:
We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.
Resumo:
We demonstrate a graphene based saturable absorber mode-locked Nd:YVO4 solid-state laser, generating ~14nJ pulses with ~1W average output power. This shows the potential for high-power pulse generation. © 2011 Optical Society of America.
Resumo:
We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.
Resumo:
We show for the first time that for a given switching pulse width, the maximum switching speed obtainable from a Mach-Zehnder interferometer employing semiconductor optical amplifiers is strongly dependent on the SOA chirp characteristics. © 2005 Optical Society of America.
Resumo:
We show for the first time that for a given switching pulse width, the maximum switching speed obtainable from a Mach-Zehnder interferometer employing semiconductor optical amplifiers is strongly dependent on the SOA chirp characteristics. © 2005 Optical Society of America.