114 resultados para tensile behavior
Resumo:
By far the greater part of our understanding about stall and surge in axial compressors comes from work on low-speed laboratory machines. As a general rule, these machines do not model the compressibility effects present in high-speed compressors and therefore doubt has always existed about the application of low-speed results to high-speed machines. In recent years interest in active control has led to a number of studies of compressor stability in engine type compressors. This paper presents new data from an eight-stage fixed geometry engine compressor and compares this with low-speed laboratory data.
Resumo:
Bifurcation of an elastic structure crucially depends on the curvature of the constraints against which the ends of the structure are prescribed to move, an effect which deserves more attention than it has received so far. In fact, we show theoretically and we provide definitive experimental verification that an appropriate curvature of the constraint over which the end of a structure has to slide strongly affects buckling loads and can induce: (i.) tensile buckling; (ii.) decreasing- (softening), increasing- (hardening), or constant-load (null stiffness) postcritical behaviour; (iii.) multiple bifurcations, determining for instance two bifurcation loads (one tensile and one compressive) in a single-degree-of-freedom elastic system. We show how to design a constraint profile to obtain a desired postcritical behaviour and we provide the solution for the elastica constrained to slide along a circle on one end, representing the first example of an inflexional elastica developed from a buckling in tension. These results have important practical implications in the design of compliant mechanisms and may find applications in devices operating in quasi-static or dynamic conditions.
Resumo:
Based on an analysis of the experimental results of a proposed bond test method, significant differences are shown to exist between the local FRP bond stress-slip relationships in the uncracked anchorage regions and in the regions between cracks. The proposed method simulates the bond behavior between the flexural cracks and anchorage regions of a flexurally FRP-strengthened RC beam. The boundary conditions, including the presence of cracks and steel, are shown to have significant effects on the local bond stress-slip models. The results showed that, at the same force, the bond stresses in the regions between cracks were lower than in regions outside the cracks, so the debonding formed in the anchorage regions. The local bond stress-slip models in the anchorage regions can be obtained from the conventional bond test methods but these do not mimic the conditions between the cracks.
Resumo:
Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers. © 2006 IEEE.